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In this two-part study, developments in finite element technology and the application thereof
to topology optimization are investigated. Ultimately, the developed finite elements and
corresponding topology optimization procedures are aimed at, but not restricted to, aiding
the design of piezoelectrically driven compliant mechanisms for micropositioning applica-
tions. The objective is to identify and exploit existing, or to develop new, finite element
technologies to alleviate the numerical instabilities encountered in topology optimization.
Checkerboarding and one-node connected hinges are two commonly encountered examples
which can directly be attributed to inadequacies or deficiencies in the finite element solution
of structural problems using 4-node bilinear isoparametric finite elements (denoted Q4). The
numerical behaviour leading to checkerboard layouts stems from an over-stiff estimation of
a checkerboard patch of Q4 elements. The numerical model of a one-node connected hinge
using Q4 elements, on the other hand, possesses no (or very little) stiffness in rotation about
the common node.

In the first part of the study, planar finite elements with in-plane rotational (drilling) degrees
of freedom are investigated. It is shown that the skew-symmetric part of the stress tensor
can directly be used to quantitatively assess the validity of the penalty parameter γ, which
relates the in-plane translations to the rotations. Thereafter, the variational formulations
used to develop these planar finite elements with drilling degrees of freedom are extended to
account for the piezoelectric effect. Several new piezoelectric elements that include in-plane
rotational degrees of freedom (with and without assumed stress and electric flux density)
are implemented, evaluated and shown to be accurate and stable.
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Furthermore, the application of alternative reduced order integration schemes to quadratic
serendipity (Q8) and Lagrangian (Q9) elements is investigated. Reduced or selective reduced
integration schemes are often used to enhance element accuracy by ‘softening’ higher order
deformation modes. However, application of reduced integration schemes to Q8 and Q9
elements is usually accompanied by element rank deficiencies. It is shown how the application
of five and eight point modified integration schemes preserve the accuracy benefits of reduced
integration, while preventing element rank deficiencies.

In the second part of the investigation, the salient features of elements with drilling degrees
are utilized in two schemes to prevent, or improve the modelling of, one-node connected
hinges. In principle, the first scheme uses the rotations computed at interior nodes to
detect excessive rotations at suspect nodes. The second scheme essentially replaces planar
elements forming a one-node hinge, where appropriate, with a more realistic beam model of
the material layout while other elements in the mesh are modelled using planar elements as
usual.

Next, the dependence of optimal topologies on element formulation is demonstrated. At-
tention is especially paid to plate and shell applications. It is shown that Mindlin-Reissner
based elements, which employ selective reduced integration on shear terms, are not reliable
in topology optimization problems. Conversely, elements based on an assumed natural strain
formulation are shown to be stable and capable of reproducing thin plate topology results
computed using shear-rigid elements. Furthermore, it is shown that an ad hoc treatment of
rotational degrees of freedom in shell problems is sensitive to the related adjustable param-
eter, whereas optimal topologies, using a proper treatment of drilling degrees of freedom are
not.

Finally, the use of reduced order integration schemes as a strategy to reduce the stiffness of
a checkerboard patch of elements is considered. It is demonstrated that employing the five
and eight point integration schemes, used to enhance the accuracy of Q8 and Q9 elements,
also significantly reduce the stiffness of a checkerboard patch of elements, thereby reducing
the probability of observing checkerboard layouts in optimal topologies.
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6.1 Schematic representation of a general material layup. . . . . . . . . . . . . . 150

6.2 Various multilayer models with solid and design layers. . . . . . . . . . . . . 152

6.3 Quadrilateral element with drilling degrees of freedom. . . . . . . . . . . . . 155

6.4 Quadrilateral Mindlin-Reissner plate element. . . . . . . . . . . . . . . . . . 155

6.5 Warped and projected shell element. . . . . . . . . . . . . . . . . . . . . . . 161

6.6 MBB beam geometry and constraints. . . . . . . . . . . . . . . . . . . . . . 163

6.7 Compliance and constraint function values for the MBB beam problem. . . . 164

6.8 Optimal topologies of MBB beam for various values of α. . . . . . . . . . . . 165

6.9 Example plate problems, geometry and constraints. . . . . . . . . . . . . . . 166

6.10 Optimal topology compliance as a function of plate thickness for the simply
supported plate problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.11 Optimal topologies of a simply supported plate. . . . . . . . . . . . . . . . . 173

xvii

 
 
 



www.manaraa.com

6.12 Optimal topologies of a corner supported square plate subjected to center
point load, ribbed model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . 174

6.13 Displaced shape of optimal topology computed using DKQ analyzed using
SRI elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.14 Optimal topologies of a corner supported square plate subjected to uniform
distributed load, ribbed model, t = 0.01. . . . . . . . . . . . . . . . . . . . . 174

6.15 Corner supported cylinder geometry and constraints. . . . . . . . . . . . . . 175

6.16 Optimal topologies of a corner supported cylinder with single layer material
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.17 Pretwisted beam geometry and constraints. . . . . . . . . . . . . . . . . . . . 176

6.18 Optimal topologies of a pretwisted beam with single layer material model. . 176

7.1 Modified reduced order integration schemes. . . . . . . . . . . . . . . . . . . 180

7.2 Example base cells often used in topology optimization. . . . . . . . . . . . . 183

7.3 Checkerboard patch with average density ρ =1/2. . . . . . . . . . . . . . . . 185

7.4 Local χ fields for various elements resulting from mean strain field ε̄11 = ε̄22 =
1 and ε̄12 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.5 Optimal topologies of the MBB beam using symmetry and employing Q4 and
Q4X elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.6 Strain energy density of fully integrated Q8 elements. . . . . . . . . . . . . . 193

7.7 Variation of p∗ for fully integrated Q8 elements. . . . . . . . . . . . . . . . . 194

7.8 Strain energy density of Q8 elements with 5-point integration scheme. . . . . 195

7.9 Zoom of strain energy density of Q8 elements with 5-point integration scheme. 196

7.10 Strain energy density of Q8 elements with 8-point integration scheme. . . . . 197

7.11 Zoom of strain energy density of Q8 elements with 8-point integration scheme. 198

7.12 Effect of integration scheme setting on p∗1: 5-point scheme. . . . . . . . . . . 199

7.13 Effect of integration scheme setting on p∗1: 8-point scheme. . . . . . . . . . . 200

7.14 Effect of integration scheme setting on p∗2: 5-point scheme. . . . . . . . . . . 200

7.15 Effect of integration scheme setting on p∗2: 8-point scheme. . . . . . . . . . . 201

B.1 Convergence histories for MBB beam for various values of α. . . . . . . . . . 234

B.2 Optimal topologies of a simply supported square plate subjected to center
point load, single layer model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . 236

B.3 Optimal topologies of a simply supported square plate subjected to center
point load, single layer model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . 237

B.4 Optimal topologies of a simply supported square plate subjected to center
point load, ribbed model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . 238

xviii

 
 
 



www.manaraa.com

B.5 Optimal topologies of a simply supported square plate subjected to center
point load, ribbed model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . 239

B.6 Optimal topologies of a simply supported square plate subjected to center
point load, honeycomb model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . 240

B.7 Optimal topologies of a simply supported square plate subjected to center
point load, honeycomb model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . 241

B.8 Optimal topologies of a clamped square plate subjected to center point load,
single layer model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

B.9 Optimal topologies of a clamped square plate subjected to center point load,
single layer model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

B.10 Optimal topologies of a clamped square plate subjected to center point load,
ribbed model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

B.11 Optimal topologies of a clamped square plate subjected to center point load,
ribbed model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

B.12 Optimal topologies of a clamped square plate subjected to center point load,
honeycomb model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

B.13 Optimal topologies of a clamped square plate subjected to center point load,
honeycomb model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

B.14 Optimal topologies of a corner supported square plate subjected to center
point load, single layer model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . 248

B.15 Optimal topologies of a corner supported square plate subjected to center
point load, single layer model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . 249

B.16 Optimal topologies of a corner supported square plate subjected to center
point load, single layer model, t = 0.1. Solved using MMA not OC. . . . . . 250

B.17 Optimal topologies of a corner supported square plate subjected to center
point load, ribbed model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . 251

B.18 Optimal topologies of a corner supported square plate subjected to center
point load, honeycomb model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . 252

B.19 Optimal topologies of a corner supported square plate subjected to center
point load, honeycomb model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . 253

B.20 Optimal topologies of a corner supported square plate subjected to uniform
distributed load, ribbed model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . 254

B.21 Optimal topologies of a corner supported square plate subjected to uniform
distributed load, honeycomb model, t = 0.01. . . . . . . . . . . . . . . . . . . 255

B.22 Optimal topologies of a corner supported square plate subjected to uniform
distributed load, honeycomb model, t = 0.1. . . . . . . . . . . . . . . . . . . 256

B.23 Displaced shape of optimal topology, computed using DKQ analyzed using
SRI elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

xix

 
 
 



www.manaraa.com

B.24 Displaced shape of optimal topology, computed using ANS analyzed using
SRI elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

B.25 Optimal topologies of corner supported cylinder with single layer material
model for various values of α. . . . . . . . . . . . . . . . . . . . . . . . . . . 259

B.26 Convergence histories for corner supported cylinder with single layer material
model for various values of α. . . . . . . . . . . . . . . . . . . . . . . . . . . 259

B.27 Optimal topologies of a corner supported cylinder with ribbed material model. 260

B.28 Optimal topologies of corner supported cylinder with ribbed material model
for various values of α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

B.29 Convergence histories for corner supported cylinder with ribbed material model
for various values of α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

B.30 Optimal topologies of a corner supported cylinder with honeycomb material
model.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

B.31 Optimal topologies of corner supported cylinder with honeycomb material
model for various values of α. . . . . . . . . . . . . . . . . . . . . . . . . . . 264

B.32 Convergence histories for corner supported cylinder with honeycomb material
model for various values of α. . . . . . . . . . . . . . . . . . . . . . . . . . . 264

B.33 Optimal topologies of pretwisted beam with single layer material model for
various values of α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

B.34 Convergence histories for pretwisted beam with single layer material model
for various values of α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

xx

 
 
 



www.manaraa.com

List of Tables

3.1 Ten element piezoelectric cantilever subject to pure bending. . . . . . . . . . 82

3.2 Relative percentage error on stress and electric displacement for Cook’s mem-
brane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Relative percentage error on vertical tip displacement of piezoelectric bimorph. 88

4.1 Eigenvalues of a square Q8 serendipity element for different integration schemes
(plane stress, |J | = 1, E = 1, ν = 1/3). . . . . . . . . . . . . . . . . . . . . . 99

4.2 Eigenvalues of a square Q9 Lagrange element for different integration schemes
(plane stress, |J | = 1, E = 1, ν = 1/3). . . . . . . . . . . . . . . . . . . . . . 100

4.3 Displacement results for distorted cantilever beam. . . . . . . . . . . . . . . 102

4.4 Cook’s membrane: Center displacement vC . . . . . . . . . . . . . . . . . . . 105

4.5 Cook’s membrane: Stress analysis. . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Normalised tip displacement of a diagonal member. . . . . . . . . . . . . . . 140

5.2 Normalised displacement of a one-node hinge. . . . . . . . . . . . . . . . . . 140

5.3 Output displacement of optimal mirror mechanisms. . . . . . . . . . . . . . . 141

6.1 Percentage difference: Corner supported square plate subjected to center
point load, ribbed model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . 168

6.2 Percentage difference: Corner supported square plate subjected to uniform
distributed load, ribbed model, t = 0.01. . . . . . . . . . . . . . . . . . . . . 169

7.1 Effective constitutive terms for different elements employing various integra-
tion schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.1 Percentage difference: Simply supported square plate subjected to center
point load, single layer model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . 236

B.2 Percentage difference: Simply supported square plate subjected to center
point load, single layer model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . 236

B.3 Percentage difference: Simply supported square plate subjected to center
point load, ribbed model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . 238

xxi

 
 
 



www.manaraa.com

B.4 Percentage difference: Simply supported square plate subjected to center
point load, ribbed model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . 238

B.5 Percentage difference: Simply supported square plate subjected to center
point load, honeycomb model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . 240

B.6 Percentage difference: Simply supported square plate subjected to center
point load, honeycomb model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . 241

B.7 Percentage difference: Clamped square plate subjected to center point load,
single layer model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

B.8 Percentage difference: Clamped square plate subjected to center point load,
single layer model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

B.9 Percentage difference: Clamped square plate subjected to center point load,
ribbed model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

B.10 Percentage difference: Clamped square plate subjected to center point load,
ribbed model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

B.11 Percentage difference: Clamped square plate subjected to center point load,
honeycomb model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

B.12 Percentage difference: Clamped square plate subjected to center point load,
honeycomb model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

B.13 Percentage difference: Corner supported square plate subjected to center
point load, single layer model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . 248

B.14 Percentage difference: Corner supported square plate subjected to center
point load, single layer model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . 249

B.15 Percentage difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

B.16 Percentage difference: Corner supported square plate subjected to center
point load, ribbed model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . 251

B.17 Percentage difference: Corner supported square plate subjected to center
point load, honeycomb model, t = 0.01. . . . . . . . . . . . . . . . . . . . . . 252

B.18 Percentage difference: Corner supported square plate subjected to center
point load, honeycomb model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . 253

B.19 Percentage difference: Corner supported square plate subjected to uniform
distributed load, ribbed model, t = 0.1. . . . . . . . . . . . . . . . . . . . . . 254

B.20 Percentage difference: Corner supported square plate subjected to uniform
distributed load, honeycomb model, t = 0.01. . . . . . . . . . . . . . . . . . . 255

B.21 Percentage difference: Corner supported square plate subjected to uniform
distributed load, honeycomb model, t = 0.1. . . . . . . . . . . . . . . . . . . 256

xxii

 
 
 



www.manaraa.com

Chapter 1

Introduction

The analysis of modern designs and systems is becoming ever more complex. Closed form an-
alytical solutions to problems, although extremely important, are often limited to relatively
simple geometries or restricted to specific loadings, and are therefore difficult to generalise to
industrial applications. For some time now numerical solution techniques, implemented on
digital computers, have been an invaluable tool in the analysis of complex physical problems.
Indeed, commercial, general purpose, finite element analysis (FEA) and computational fluid
dynamics (CFD) software are now commonplace in the engineering community.

Although numerical methods are commonly used commercially in the analysis of mechanical
designs, they are often not fully exploited in the design process itself. Generally this process
starts with the designer conceiving an initial concept design which is analysed, possibly
using numerical methods, and the results are judged based on predetermined objectives or
criteria. If the design is not satisfactory the designer then, based on past experience, predicts
an improved design. This process is repeated until a satisfactory design is found, upon which
the process is terminated. Some of the disadvantages of such a procedure include:

• There is no guarantee that the design is optimal, or even good, although it satisfies
the prescribed requirements. That is to say, unknown to the designer, significant
improvements may still be possible.

• The process relies on the experience of the designer (and often trial-and-error) to
predict design improvements. This process may not be systematic, and in fact the
designer’s intuition or experience could at times be misleading.

• The process is not repeatable, and is difficult to describe as a fixed procedure. If a
designer gains experience with a given problem, it is would take a significant effort to
pass this experience on, or document a procedure, to repeatably come up with a good
design for similar problems.

Structural optimization holds the potential to improve upon or optimize designs conceived
by designers in a systematic, repeatable manner. Furthermore, using structural topology
optimization, the design process itself can largely be described and automated1. Structural

1Within reason and for specific components only.
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2 CHAPTER 1. INTRODUCTION

Topology optimization

Shape optimization

Sizing optimization

Load

Load

Load

Figure 1.1: Three categories of structural optimization. Initial design and problem descrip-
tion on the left, optimal designs on the right. Note that optimal designs in this figure are
for illustrative purposes only.

optimization is therefore an important tool which can assist in finding not only good, but
optimal solutions to structural design problems.

1.1 Structural topology optimization

Structural optimization seeks to find the best design (out of all possible designs) which is
capable of satisfying a number of prescribed criteria. The measure of how good the design is
and the criteria which the design is required to fulfil are usually conflicting. A simple example
of such a problem is to determine the stiffest possible structure, under given loading and
support conditions, such that the weight of the structure is limited. The requirements are
conflicting because physically the more material the structure contains, the stiffer it will
generally be, but the heavier it becomes.

Broadly speaking, structural optimization problems can be classified into one of three cate-
gories, namely sizing, shape or topology optimization. These three classes are schematically
depicted in Figure 1.1.

Sizing optimization generally uses truss or grillage member cross-sectional areas, or mem-
brane, plate or shell component thicknesses as design variables in the optimization process.
More specifically, in sizing optimization problems the shape and topology of the design anal-
ysis domain considered are fixed, and do not change during the optimization process, as
shown in Figure 1.1. Therefore, if a finite element model is used, the nodes remain in fixed
positions throughout the process.
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On the other hand, shape optimization generally involves finding the analysis domain shape
which optimally performs a given function, subject to certain constraints. The design domain
is usually determined parametrically by the design variables. If gradient based optimization
methods are employed, considerable difficulties would be encountered if holes were to merge
during the process, and it is certainly not a trivial task to determine the effect of adding
or removing holes a priori, or indeed to determine where to introduce additional holes if
necessary. Therefore, during this process the topology is generally fixed. For example, in
the shape optimization illustration in Figure 1.1, the starting design has three holes and the
final design also has three holes.

Finally, topology optimization can be considered the most general type of structural opti-
mization. In topology optimization, the optimal boundary and connectivity, as well as the
optimal size, shape, location and number of features (including holes) in an analysis domain
are sought. Topology optimization is therefore also sometimes referred to as generalised
shape or layout optimization.

These classes of problems can be combined in procedures to exploit the advantages of the
different techniques. For example, some authors have combined shape and topology opti-
mization to take advantage of the salient features of both classes simultaneously, especially
in the design of generally curved shell structures [1, 2]. In this work, however, attention is
exclusively focused on the topology optimization problem.

Furthermore, the optimization of low volume fraction, inherently discrete, structures (such
as truss structures) is not considered, and attention is focused on continuum structural
problems only. Having said that, much of the theory and many techniques employed in the
optimization of continuum structures are derived from the topology optimization of truss and
grillage problems, see [3, 4] for examples. Furthermore, many of the difficulties encountered
are similar, for example singularity problems with stress constraints [4, 5, 6, 7].

The iterative process of structural topology optimization used in this study is schematically
depicted in Figure 1.2. In the remainder of this section, an informal description of the process
is presented in more detail for readers unfamiliar with the process.

Initial design and design parameterization

The first step in the process is to select an initial or starting design. This design could be
based on the experience of the designer, but could also simply be randomly selected within
a given design domain or could be the result of a previous (more general) optimization
procedure.

At this stage the parameters that describe the design, and which will be allowed to change
during the process (the design variables, x) are defined. The initial design is accordingly
described by an initial design vector x0. The type of parameterization chosen will dictate
(or is dictated by) the type or category of structural optimization that is employed. The
design variables used in topology optimization typically describe the material distribution
within the design domain using a density function.
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Figure 1.2: Schematic of the process of structural topology optimization.

Structural analysis

After the physical problem has been identified and a representative mathematical model con-
structed, the initial design can be analysed. If necessary, simplifying assumptions are made
in the construction of the mathematical model. Often, the model of the physical problem
results in a system of differential equations. These equations can be solved using classical
analytical methods, the finite element method (FEM), the boundary element method (BEM)
or any of numerous other numerical methods. In this work, the finite element method is
exclusively used to perform the structural analyses.

Design evaluation and sensitivity analysis

The next step in the process involves the computation of the measure of how good the design
is (the objective function denoted f(x)) and the criteria which the design is required to fulfil
(the constraint functions, with inequality and equality constraints denoted gi(x) and hj(x)
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respectively).

Often the structural analysis is rather general, especially if general purpose finite element
software is used, and it may therefore be necessary to post-process the results in order to
extract the specific information used to construct the objective and constraint functions.

Furthermore, if a gradient based optimization procedure is to be employed, gradient or
sensitivity information is also required. The process by which sensitivity information is
obtained is usually referred to as design sensitivity analysis. For the problems considered in
this work, sensitivity information is relatively easily and numerically inexpensively obtained,
and therefore solely gradient based methods will be used.

Systematic design improvement

The step in which a prediction is made for an improved design is at the heart of the structural
optimization process. Mathematical optimization techniques are employed to systematically
generate a series of improving designs. Mathematical optimization can be described as
consisting of the formulation and the solution of a constrained optimization problem of the
general mathematical form:

min
x

f(x)

subject to : gi(x) ≤ 0, i = 1, 2, ...,m

hj(x) = 0, j = 1, 2, ..., r

(1.1)

where x = [x1, x2, ..., xn]T ∈ R
n is the vector of real numbered design variables. The real

scalar functions f , g and h represent the objective function and inequality and equality
constraint functions respectively. For more details see for example Haftka et al. [8] or
Snyman [9].

Over the years, many techniques have been developed to solve the optimization problem, each
well suited to particular problems. Many of the classical methods for solving convex problems
are gradient-based, including classical line search methods and sequential approximation
methods.

In this study, two different gradient based methods are used, namely the Method of Moving
Asymptotes (MMA) of Svanberg [10], and the well known heuristic updating scheme based
on Optimality Criteria (OC) [4].

Stopping criterion

The above process is repeated until some termination criterion has been satisfied, upon which
the process is stopped. The stopping criterion can be based on the number of iterations
performed, the norm of the change in function value, the norm of the change in design
variables, the gradient of the objective function or any combination of the above. If it is not
possible to further improve upon this design with a given algorithm, it is considered a local
optimal solution, usually denoted x∗.
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For some classes of problems, such as problems with strictly convex objective and constraint
functions, this local optimum may be shown to also be the global optimal solution. However,
if this is not possible (as is the case with topology optimization) this local optimum is often
accepted as a reasonable approximation to the global optimum.

1.2 Background to the study

Arguably one of the most popular and immediately useful applications of structural topology
optimization is in the synthesis of compliant mechanisms. Whereas traditional mechanisms
employ rigid links connected by movable joints, compliant mechanisms are mechanical de-
vices used to transfer or transform motion, force or energy via mobility gained through the
deflection of flexible members. Manually designing compliant mechanisms to carry out all
but the simplest of tasks is a challenging exercise. Therefore, finite element modelling and
topology optimization have become increasingly useful design tools of late.

Compliant mechanisms have a number of advantages over conventional jointed mechanisms.
For example, they have fewer moving parts, reducing or eliminating backlash, play, noise as
well as weight. Furthermore, compliant mechanisms are easily miniaturized making them
ideal for use in Micro Electro Mechanical Systems (MEMS) or precision engineering appli-
cations where smart materials are regularly used as transducers.

Piezoelectric materials in particular are very attractive as actuator smart materials for com-
pliant mechanisms due to their high energy density, large force capacity and excellent oper-
ational bandwidth. However their low induced strain (typically in the order of 0.1−0.2%2)
means that output displacements are small, limiting their direct application. To convert
these small induced strains to usable displacements, piezoelectric ceramics commonly em-
ploy some form of mechanical amplification. Often, this mechanical amplification takes the
form of a compliant mechanism.

In 2003 the Department of Mechanical Engineering, and in particular the Structural Opti-
mization Research Group (SORG) at the University of Pretoria, and the Centre for Inte-
grated Sensing Systems (CISS)3 at the Council for Scientific and Industrial Research (CSIR)
in South Africa became jointly involved in a project aimed at investigating the development
of novel finite elements and structural optimization techniques for application in compliant,
piezoelectrically actuated, micropositioning systems.

The goal of this study was to develop accurate finite elements, or procedures used in their
calculation, which could be used for (but are not limited to) the modelling of piezoelectri-
cally driven compliant mechanisms. Furthermore, the study aimed to show how the salient
features of these specially developed finite elements and procedures could be exploited in
a topology optimization environment to overcome common numerical instabilities such as
checkerboarding. In the remainder of this section a very brief background to relevant topics
in topology optimization and the finite element method, is presented.

2However, new relaxor ferroelectric single crystals (PZN-PT and PMN-PT) can reportedly deliver in
excess of 1% strain [11, 12].

3Now known as Sensor Science and Technology (SST).
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1.2.1 Topology optimization

In topology optimization, there are several acknowledged fundamental, theoretical issues
which need to be appropriately addressed if sensible results are to be achieved [13]. These
issues include non-existence of the solution (mesh dependency), multiple local optima, and
non-uniqueness of the solution.

Firstly, it is well known that the 0-1 problem statement in topology optimization lacks exis-
tence of solution in a continuum setting [4]. This problem exists due to a lack of closedness of
the set of admissible designs.4 In a discrete (finite element) setting, this problem manifests
itself as a mesh dependency problem. One possible way to deal with this problem is to a
priori allow composite materials constructed from the original isotropic material (and void).
This method extends the design space and sufficiently relaxes the original problem. Alter-
natively, the design space can be restricted by limiting local or global variations in material
distribution, thereby sufficiently closing the the set of admissible designs.

Another common complication is that of multiple (local) optima. If one observes the many
different optimal solutions which have been published for benchmark problems, for example
the well known MBB beam problem, it is clear that there are many local optima present.
This is due to the fact that most topology optimization problems are non-convex. Unfortu-
nately, there is no way to overcome this problem, although a popular method to alleviate
non-convexity is the use of continuation methods. Continuation methods gradually change
problems from artificial (strictly) convex, or nearly convex, problems to the original non-
convex problem.

Finally, problems with multiple globally optimal solutions are termed non-unique. An ex-
ample commonly cited is that of a structure under uniaxial tension, in which only the
cross-sectional area is of importance and not the topology. The only sensible way to deal
with this problem is to impose manufacturing preference constraints.

Unfortunately these fundamental issues cannot be resolved solely through the use of finite
element technology, no matter how sophisticated the finite element. Therefore attention in
this study is rather focused on problems which occur locally in material distributions, and
which can be attributed to the numerical deficiencies of the finite element model, such as
checkerboarding and one-node connected hinges.

The checkerboarding problem is characterised by material in ‘optimal topologies’ being dis-
tributed in alternating solid and void elements, similar to the pattern created by the squares
on a checkerboard. Checkerboarding is largely a result of poor numerical modelling of this
spurious material distribution, as shown by Dı́az and Sigmund [14]. In essence, the numerical
behaviour of this material distribution is over-stiff and is therefore especially common in the
solutions of minimum compliance problems.

The one-node connected hinge is characterised by four elements surrounding a node, where
two diagonally opposite elements are solid and the other two are void, see for example

4As more holes are introduced without changing the volume of the structure, the efficiency of the structure
is generally improved. Eventually, variations on the microstructural level are introduced (requiring composite
material descriptions) which cannot be described by the original problem which permits isotropic material
only.
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Poulsen [15]. This material distribution is somewhat common in the design of compliant
mechanisms such as those for which this work is ultimately aimed. This is due to the fact
that in compliant mechanism design, solid state hinges are employed to achieve the required
motion and the numerical model of a one-node hinge employing standard elements is ideal
(albeit unrealistic) since it offers zero resistance to rotation about the common node.

For a more detailed introduction to the topology optimization problem, the reader is referred
to Appendix A.

1.2.2 The finite element method

The finite element method (FEM) is essentially a numerical method for the solution of
differential equations [16]. Originally, FEM gained popularity among engineers as a method
for structural stress analysis. With the advent of ever faster and less expensive digital
computers, FEM found application in other fields including heat transfer, fluid dynamics,
as well as electric, piezoelectric and electromagnetic analysis. In fact, many commercial
finite element codes now support these types of analyses as standard and some even have
structural optimization algorithms included.

FEM topics for consideration in this study were identified based on the topology optimiza-
tion problems selected for attention, namely checkerboarding and one-node connected hinges.
Finite element procedures which could alleviated or eliminate the numerical modelling defi-
ciencies associated with, or leading, to these material distributions were sought.

Since checkerboarding has been attributed to an over-stiff numerical model of a checkerboard
layout, a procedure to effectively soften elements in this layout was sought. One common
technique used to soften (especially higher order deformation modes) is to employ a reduced
numerical integration scheme in the calculation of elemental quantities.

In the finite element method, the equilibrium equations involve integration over the element
volume. This is also true for the expressions for consistent nodal loads, mass matrices,
penalty matrices, etc. For simple elements the integrand may be formed explicitly, resulting
in exact integration. However, numerical integration schemes are necessary when element
geometries are distorted, of which the Gaussian rules are possibly the best known and most
frequently employed. The effects of numerical integration schemes are summarized in a clear
manner by Cook et al. [17].

A lower-order quadrature rule, called reduced integration, may be desirable for two reasons.
Firstly, since the expense of generating the stiffness matrix by numerical integration is pro-
portional to the number of sampling points, fewer points results in lower computational cost.
Secondly, a low order rule tends to soften an element, thus countering the overly-stiff be-
havior associated with assumed displacement fields. (The displacement based finite element
method is monotonically convergent from below.) Softening comes about because certain
higher-order polynomial terms happen to vanish at Gauss points of a low-order rule. Simply
stated, with fewer sampling points, some of the more complicated displacement modes offer
less resistance to deformation.

Conversely, the numerical model of a one-node hinge comprised of standard displacement-
based elements is known to possess little or no stiffness in rotation. In fact, for planar
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problems most elements do not possess in-plane rotational degrees of freedom at all. However,
elements with in-plane rotational degrees of freedom do exist, and their use in schemes to
effectively stiffen one-node connected hinges is evaluated.

In recent times, elements with in-plane rotational (drilling) degrees of freedom have become
quite popular. Apart from enrichment of the displacement field, which increases element
accuracy, drilling degrees of freedom allow for the modelling of, for instance, folded plates
and beam-slab intersections.

The membrane elements used in this study account for in-plane rotations based on a con-
tinuum mechanics definition of rotation. The approach relies on a variational formulation
employing an independent rotation field, as presented by Hughes and Brezzi [18]. It utilizes
the skew-symmetric part of the stress tensor as a Lagrange multiplier to enforce equality of
independent rotations and the skew-symmetric part of the displacement gradient in a weak
sense. The stress tensor is therefore not a priori assumed to be symmetric.

1.3 Objectives of the study

There has been a steady stream of publications reporting on improvements and advances in
finite element technology since the 1970’s, when FEM was conceived as a general computer
implementation [19]. Improvements can be judged on several measures, including accuracy,
numerical robustness or computational cost. Unfortunately though, as with most things,
there is ‘no free lunch’, and generally accuracy is traded for robustness or computational
effort, or vice versa.

Advances in finite element technology are of particular interest to practitioners of structural
optimization, since multiple finite element analyses (at least one per iteration) are required
to determine the optimal structure. Procedures which increase accuracy or decrease compu-
tational effort are of significant benefit in such an iterative environment, and are therefore
per se of interest.

However, finite element formulation does not only affect the accuracy (and/or numerical
effort) required to perform the structural analyses in topology optimization, it can actu-
ally influence the resulting topology itself. For example, the use of higher order elements
are known to lessen or eliminate checkerboarding, common in minimum compliance solu-
tions employing 4-node planar elements. Although it may be argued that topology results
containing checkerboarding are physically unreasonable, the conclusion is that under certain
circumstances finite element formulation indeed affects the results of a topology optimization
procedure.

The goal of this work is essentially to investigate this observation further. In principal,
the intention is to develop new finite elements and/or procedures (or to identify existing
elements and procedures) and to exploit their unique characteristics to overcome numerical
instabilities or deficiencies in a topology optimization setting.

Firstly, traditional planar elements do not possess nodal rotational degrees of freedom.
Therefore if two of these elements are connected at a single node, the assembly offers no
resistance to rotation about the common node. Although this model of a compliant hinge is
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completely unrealistic and therefore undesirable in topological results, one-node hinges are
regularly encountered in compliant mechanism design using topology optimization. Conse-
quently, the idea to exploiting the nodal rotational stiffness associated with elements with
drilling degrees of freedom to prevent (or at least improve the numerical model of) a one-node
connected hinge is investigated.

Ultimately, the practical application of this investigation is in the design of piezoelectrically
driven compliant mechanisms. Therefore new piezoelectric elements with drilling degrees
of freedom are required. Furthermore, although it was decided to focus the finite element
development on 2-D planar elements, planar membrane elements also form part of flat shell
elements, and therefore developments in planar element technology are not restricted to
planar problems. Accordingly, the effects of membrane (and plate) element formulations on
flat shell topology optimization results are also investigated.

Secondly, since the model of a checkerboard patch of elements is commonly known to exhibit
over-stiff behaviour, a method to soften the finite element model is sought. A popular
method of softening (especially higher-order) deformation modes associated with elements
is to employ reduced integration schemes. Subsequently, the notion of employing alternative
reduced order integration schemes to soften patches of elements arranged in a checkerboard
layout is investigated.

In summary, the primary objectives of this study are to:

1. Develop new finite elements, or elemental procedures, which not only improve model
accuracy, robustness and/or efficiency, but can also be used in schemes which alleviate
or eliminate the numerical instabilities, or improper modelling, associated with spuri-
ous material layouts in topology optimization. Attention is focused on the following
topics in particular:

• Determining the sensitivity of elements with drilling degrees of freedom to the
penalty parameter, usually denoted γ.

• The formulation, implementation and evaluation of planar piezoelectric finite el-
ements with drilling degrees of freedom.

• Investigating the use of reduced order integration rules in higher order elements
to enhance element accuracy.

Note that application of these finite element developments is not restricted to struc-
tural topology problems. Their increased accuracy, modelling capacity or numerical
efficiency could also be applied in general purpose finite element codes.

2. To develop procedures which exploit the salient features of the new finite elements, or
elemental procedures, in order to overcome or alleviate the numerical instabilities, or
modelling deficiencies, leading to spurious material layouts in topology optimization.
More specifically, the topics under consideration include:

• Exploiting elements with drilling degrees of freedom in schemes to prevent unde-
sirable local material distributions in topology optimization.
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• Evaluating the effect of element formulation in plate and shell topology optimiza-
tion problems.

• Quantifying the effect of reduced order integration rules on the stiffness of a
checkerboard patch of elements.

1.4 Thesis overview and list of contributions

The thesis is divided into six main research chapters. Each of these chapters represent sci-
entific contributions (in the form of conference or journal papers) made during the course of
this work. As such, each chapter is intended to be self-contained and can be read indepen-
dently of the other chapters. Note also that the notation in each chapter is therefore slightly
different.

A schematic depiction of the thesis layout is presented in Figure 1.3. As indicated in the
figure, the thesis body is divided into two parts. The first part contains Chapters 2 to 4,
and details contributions made in finite element development and technology. The second,
comprising Chapters 5 to 7, explores the application of finite element technology in a topol-
ogy optimization environment. Furthermore, the finite element developments presented in
Chapters 2 and 3 are related to topology optimization topics communicated in Chapters 5
and 6. Similarly the finite element developments offered in Chapter 4 find application in
Chapter 7.

In Chapter 2 an introduction to elements with drilling degrees of freedom (DOFs) is pre-
sented. Furthermore, the effect of the parameter which relates in-plane displacements and
rotations, usually denoted γ, is studied. A unique feature of this study is the novel use of
the skew symmetric part of the stress tensor to assess element accuracy. This contribution
has been published in Finite Elements in Analysis and Design, with the full reference:

• C.S. Long, S. Geyer, and A.A. Groenwold. A numerical study of the effect of penalty
parameters for membrane elements with independent rotation fields and penalized
equilibrium. Finite Elements in Analysis and Design, 42:757–765, 2006.

Chapter 3 details the development of planar 4-node piezoelectric elements with drilling
DOFs. Firstly, two families of variational formulations accounting for piezoelectricity and
in-plane rotations are derived. The first retains the skew-symmetric part of the stress tensor,
while in the second, the skew part of stress is eliminated from the functional. The finite
elements derived from the variational formulations are then benchmarked against existing
elements.

Much of the work presented in this chapter is summarised in the journal article:

• C.S. Long, P.W. Loveday, and A.A. Groenwold. Planar four node piezoelectric ele-
ments with drilling degrees of freedom. International Journal for Numerical Methods
in Engineering, 65:1802–1830, 2006.

However, due to space limitations in the journal article, not all variational formulations are
given in detail and only two of the eight elements presented in this chapter are evaluated.
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Figure 1.3: Schematic of thesis layout.

Here, the complete compilation of variational formulations, as well as a numerical evaluation
of all eight elements (with and without assumed stress and electric flux density) are presented.

Chapter 4 explores the application of modified (5- and 8-point) integration schemes in
higher order Q8 and Q9 elements. Reduced integration schemes are often employed to
enhance element accuracy. Application of a 4-point reduced integration rule in quadratic
elements however, results in spurious zero energy modes. The application of modified in-
tegration rules in elemental calculations of Q8 and Q9 elements is shown to suppress these
spurious modes while, maintaining element accuracy comparable to that of their under-
integrated counterparts.

The journal article resulting from this work is

• C.S. Long and A.A. Groenwold. Reduced modified quadrature for quadratic membrane
finite elements. International Journal for Numerical Methods in Engineering, 61:837–
855, 2004.

Chapter 5 explores the use of elements with drilling DOFs in developing new schemes to
prevent checkerboarding, one-node connected hinges and diagonal members. As an appli-
cation, topology optimization is applied to the design of a piezoelectrically driven mirror
scanning device. The new method to deal with one-node connected hinges and diagonal
members is employed in order to improve upon the designs achieved using conventional Q4
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elements and filter strategies.

The presentation in this chapter is largely adapted from work that was presented at the 5th

and 6th World Congress of Structural and Multidisciplinary Optimization (WCSMO5 and
WCSMO6). For further details, the reader is referred to the articles:

• C.S. Long, P.W. Loveday, and A.A. Groenwold. On membrane elements with drilling
degrees of freedom in topology optimization. In Proc. Fifth World Congress on
Structural and Multidisciplinary Optimization, Lido di Jesolo, Venice, Italy, May 2003.
Paper no. 83.

• C.S. Long, P.W. Loveday, and A.A. Groenwold. Design of a piezoelectric mirror
scanning device using topology optimization. In Proc. Sixth World Congress on
Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, May 2005. Paper
no. 4031.

Chapter 6 deals with generally curved shell problems in topology optimization. The differ-
ences in optimal topologies obtained when employing ad hoc versus mathematically sound
methods to include in-plane rotations, are investigated. The sensitivity of optimal topologies
to the parameter γ, studied in Chapter 2, for membrane and shell problems is quantified.
Furthermore, the effect of the plate component of flat shell elements on optimal topologies
is determined. Differences between the popular Discrete Kirchhoff Quadrilateral (DKQ)
elements, and two frequently employed Mindlin Reissner plate elements, are presented.

Parts of this work were presented at the Second International Conference on Structural
Engineering, Mechanics and Computation held in Cape Town

• C.S. Long, A.A. Groenwold, and P.W. Loveday. Implications of finite element formu-
lation in optimal topology design. In A. Zingoni, editor, Progress in Structural En-
gineering, Mechanics and Computation, pages 1015–1019, Cape Town, South Africa,
July 2004.

Furthermore, the work in this chapter is to form the basis of an article:

• C.S. Long, A.A. Groenwold, and P.W. Loveday. Effect of element formulation on mem-
brane, plate and shell topology optimization problems. Finite Elements in Analysis
and Design, 2007. To be submitted.

Chapter 7 reports on the application of reduced order integration schemes in topology
optimization. It is widely known that a patch of elements, with material distributed in a
checkerboard pattern, exhibits artificially high stiffness. This is generally accepted as the
cause of checkerboarding, a phenomena characterised by significant areas of ‘optimal’ topolo-
gies in which material is distributed in a checkerboard-like pattern. Therefore, particular
attention is paid to the effect of reduced order integration on the stiffness of higher order
(Q8 and Q9) checkerboard patches.

A journal article summarising this work is in preparation:
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• C.S. Long, A.A. Groenwold, and P.W. Loveday. Effect of reduced order integration
schemes on checkerboard patterns in topology optimization. Structural and Multidis-
ciplinary Optimization, 2007. To be submitted.

Finally, in Chapter 8 a retrospective summary of the work is offered. Some concluding
remarks regarding the study are offered, as well as recommendations for future work.

In Appendix A a brief introduction to topology optimization is offered, while Appendix
B presents some additional topology optimization results not included in Chapter 6.
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Chapter 2

Stability of elastostatic elements with
drilling degrees of freedom

2.1 Summary

This chapter presents a short introduction and background to finite element formulations
with drilling degrees of freedom (DOFs). Early parts of the chapter are largely given as a
background to the formulation of elements with drilling DOFs. However, this chapter also
presents a new contribution which has been made in the stability analysis of these elements.
In particular, the novel idea of using the skew-symmetric part of stress as an error estimate
has been proposed.

In particular, a numerical investigation into the effect of the penalty parameter in elements
with drilling DOFs, for which the stress tensor σ is not a priori assumed to be symmetric,
is offered. The parameter under investigation is γ, which relates the in-plane translations
to the rotations for elements with drilling DOFs. Rather than simply reporting on the
quantitative influence of γ on measures like displacement, rotation and stress, the skewness
of the nonsymmetric stress tensor is directly assessed. Results are presented for both isotropic
and orthotropic constitutive relationships.

2.1.1 A word on notation

Before starting with the presentation, some brief notes on the notation employed are called
for. Firstly, the notations employed to denote variables in this chapter, and in Chapter 3,
differ somewhat. In the present chapter, the conventional mechanical symbolic designations
are used, whereas in Chapter 3 the symbols traditionally used in the piezoelectric research
community are employed. For example in what is to follow, ε denotes the mechanical
strain tensor, which is denoted S in Chapter 3. Furthermore, in Chapter 3 the symbol
ε is reserved for the dielectric constitutive properties. To avoid confusion, the notation
employed is explained in detail in the text of each chapter and should not be assumed to be
consistent throughout this work.

19
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Figure 2.1: Flat element subject to in-plane membrane and bending actions.

Secondly, a conventional tensor notation, similar to that employed by for example Pimpinelli
[20], where “·” is reserved for the scalar inner product between tensors of given order, is used.
This notation is slightly different to that employed for example by Hughes and Brezzi [18]
or Ibrahimbegovic et al. [21].

2.2 Introduction

In this section some background is presented on finite elements with drilling degrees of
freedom (DOFs). Much of the work in the early part of this chapter is relatively widely
known, but is given here as an introduction for those readers unfamiliar with the topic.

In recent times, elements with in-plane rotational (drilling) degrees of freedom have become
quite popular. Apart from enrichment of the displacement field, which increases element
accuracy, drilling degrees of freedom allow for the modelling of, for instance, folded plates
and beam-slab intersections. Although only planar membrane elements are considered in
this chapter, the need for elements with an in-plane rotational DOFs should be seen in the
light of their application in shell analyses. Plane stress membrane elements are commonly
combined with plate elements to form flat shell elements. The membrane and plate (bending)
constituents of such a flat shell element are depicted separately in Figure 2.1. The element
possesses nodal displacements ux, uy and uz and rotations θx, θy and θz, and can be subjected
to both in-plane membrane and bending actions at each node i.

As explained for example in Zienkiewicz and Taylor [22], for in-plane actions, the states of
stress and strain can be uniquely defined in terms of the two in-plane displacements. The
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relation between in-plane forces and displacements is given by:

kmqm = fm, (2.1)

where qm = [uxi uyi]
T , represents the in-plane displacements in the x and y directions, with

corresponding forces fm =
[

fxi f yi

]T
. The components of displacement are comprised of

the displacements at each node. For the 4-node element depicted in Figure 2.1, we have
uxi = [ux1 ux2 ux3 ux4]

T , uyi = [uy1 uy2 uy3 uy4]
T , with the forces expanded similarly.

The superscript ‘m’ denotes these as in-plane membrane components. km is the membrane
stiffness matrix.

Similarly, the bending components can be expressed uniquely in terms of the out-of-plane
displacement and two rotations at each node as

kbqb = fb, (2.2)

where qb = [uzi θxi θyi]
T , with the forces and moments given by f b = [f zi mxi myi]

T .
In this case, the superscript ‘b’ indicates that these terms are bending-related, and kb is the
plate bending stiffness matrix.

In this simple illustrative example, there is no coupling between in-plane and bending actions.
What is more, up to this point it has not been necessary, at least in terms of the description
of the problem mechanics, to include the in-plane rotations (θzi).

All six degrees of freedom at each node can now be assembled as

kq = f , (2.3)

where, at each node, displacements and rotations are given as qi = [qm
i qb

i θzi]
T and the

forces and moments are assembled as f i = [fm
i fb

i mzi]
T . The stiffness matrix is in turn,

made up of the following submatrices for a 4-node element

k =





km
8×8 08×12 020×4

012×8 kb
12×12

04×20 04×4



 , (2.4)

where no stiffness is associated with the rotational degree of freedom.

Difficulties arise if any number of flat shell elements employing this formulation, connected
at a node, are co-planar (or nearly so) [22]. Examples of this type of assemblage include
flat shell segments, as well as straight boundaries of singly curved shells. When the local
coordinate directions of these elements happen to coincide with the global coordinates, the
equilibrium equations corresponding to terms with θzi reduce to 0=0, which does not present
special difficulties. However, if the local and global coordinates differ the global stiffness
matrix becomes singular, and detection of this singularity could present difficulties. If it is
not possible to assemble stiffness matrices in local coordinates (and simply delete all 0=0
equations), an arbitrary stiffness k′θz , can be inserted at these points only. Both of these
procedures lead to programming difficulties in general codes, due to the subjective nature of
‘nearly co-planar’ detection.
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There are several problems (apart from the rank deficiency) associated with this type of
element. The ordinary membrane part of the stiffness matrix employing an isoparametric
formulation is usually very stiff, especially in bending. This problem can be alleviated by
employing a mixed or hybrid element, or an element with an enhanced strain formulation. A
more serious problem is that of possible incompatible in-plane rotation which could occur in
an assembly, for example in beam-slab connections, or at the intersection of a folded plate.

These issues can be addressed if suitable membrane elements with drilling degrees of freedom
(DOFs) are formulated, implemented and superimposed on an appropriate plate element to
form a shell element with 6 DOFs per node. Since most general and commercial finite element
codes make provision for 6 DOFs per node in any case, this improvement is largely cost free
in terms of computational and implementational effort [22]. Furthermore, the resulting
membrane elements are generally more accurate due to an enrichment of the displacement
field [21, 23, 24].

2.3 Historical development of elements with drilling

DOFs

In this section a brief history of the development of elements with drilling DOFs is presented.
Distinction will be made between vertex (or ω) rotations which need not be directly related
to the continuum mechanics definition of in-plane rotation, and drilling (or Ω) rotations
that are. In a finite element setting, the Ω drilling degree of freedom may be physically
interpreted as a true rotation of the vertex bisecting the angle between adjacent edges of the
finite element. The continuum mechanics definition of the in-plane rotation field Ωz is

Ωz =
1

2

(

∂uy

∂x
− ∂ux

∂y

)

, (2.5)

where ux and uy are the components of the in-plane displacement field in the x and y
directions, respectively.

Compilations of early (unsuccessful) efforts to develop elements with drilling DOFs are pre-
sented by Frey [25] and Bergan and Felippa [26] as well as, among others, [27, 28]. Several
early attempts to develop membrane elements with drilling DOFs failed, for example [29, 30].
These repeated failures prompted Irons and Ahmad [31] to view as futile the task of con-
structing elements with drilling degrees of freedom.1

However in the mid-80’s, Allman [32] and Bergan and Felippa [26] achieved a previously
unattained level of success. Instead of the cubic functions previously used, they employed a
quadratic displacement function for the normal component of displacement.

The interpolation used by Allman (referred to as Allman interpolations) is depicted in Figure
2.2. Specifically the interpolation consists of a quadratic function for the component of
displacement normal to the element side, and a linear form for the tangential component of
displacement.

1To be fair though, some of the theory used to develop current elements was not known to them at the
time [26].
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Figure 2.2: Displacement of an element side 1−2.

According to Allman [32] (who introduced the term ‘vertex rotations’), the relation between
vertex rotation, ω, and normal displacement is given by

−ω2 + ω1 =
∂un

∂s
|l −

∂un

∂s
|0, (2.6)

where ω1 and ω2 are the vertex rotations at nodes 1 and 2, respectively. It can be shown
that this reduces to

ω1 − ω2 = − 8

l12
un12 . (2.7)

The interpolation of un can therefore be written in terms of nodal vertex rotations as

un = (1 − s

l12
)un1 +

s

l12
un2 −

s

2
(1 − s

l12
)(ω1 − ω2). (2.8)

Clearly, these vertex rotations are not the same as the true rotations for plane elasticity,
defined in (2.5), but related to them in an indeterminate way only [25].

Since then, many papers on the subject have appeared. Cook [33] showed that the Allman
element can be obtained by applying a coordinate transformation to a higher order element
with mid-side nodes. This technique was extended to elements other than triangles, resulting
in rank deficient quadrilateral elements. MacNeal and Harder [24] refined this element by
developing a method to suppress the rank deficiency.

Other noteworthy developments are credited to Jetteur, Jaamei and Frey [25, 34, 35, 36] and
to Taylor and Simo et al. [37, 38, 39].

More recently, Hughes and Brezzi [18], presented a rigorous mathematical framework in
which to formulate elements with independent rotational interpolations. They argue that,
utilising the formulation of Reissner [40], formulations employing ‘convenient’ displacement,
rotation and stress interpolations are doomed to failure. Instead, they propose a modified
variational principle, with improved stability properties in the discrete form.

Early finite element interpolations employing the formulation of Hughes and Brezzi were
presented by Hughes et al. [41] and Ibrahimbegovic et al. [21, 42]. These elements depend
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on a problem-dependent penalty parameter γ, which relates the in-plane translations to the
in-plane rotations. The value of γ has been the topic of a number of studies [18, 21, 43, 44, 44].
For linear elastic isotropic Dirichlet problems, the formulation is reported to be relatively
insensitive to the value of γ [18, 21, 45], and it was proposed that γ = µ, with µ the shear
modulus. For different conditions (e.g. orthotropy or elastodynamics), a greater sensitivity
to the value of γ is to be expected. For dynamic problems, for example, Hughes et al. [44]
propose γ = µ/10.

Independent from work on drilling degrees of freedom, the developments in mixed/hybrid
membrane finite elements have been equally important during recent years. Since the as-
sumed stress finite element presented by Pian [46], numerous formulations have been pro-
posed. A compilation is presented by Pian [47]. Eventually, assumed stress formulations
were combined with drilling degrees of freedom in a single element formulation, e.g. see
Aminpour [48, 49], Sze and Ghali [50], and Geyer and Groenwold for quadrilateral 8β and
9β drill families [43].

Since then, the development of membrane finite elements with drilling DOFs has been signif-
icant. Sze and co-workers [51, 50] developed elements with in-plane rotations and assumed
stress fields. Groenwold and Stander [52, 53] applied the 5-point quadrature presented
by Dovey [54] to drilling degree of freedom membranes, which improved the element be-
haviour through the introduction of a ‘soft’ higher order deformation mode. Later Geyer
and Groenwold [43] also developed assumed stress finite elements with drilling DOFs. Re-
cently Pimpinelli developed an assumed strain quadrilateral element with drilling degrees of
freedom [20].

In this chapter the effect of the parameter γ, which relates the in-plane translations and
rotations, is numerically investigated. The chapter is set out as follows: Firstly in Section
2.4, the framework developed by Hughes and Brezzi [18], within which elements with drilling
DOFs are formulated, is presented. The finite element interpolations employed are then
detailed in Section 2.5. Next, stability requirements for the Dirichlet elastostatic problem
due to Hughes and Brezzi are briefly discussed in Section 2.6. In Section 2.7, stability
and consistency requirements are numerically verified for constant stress states. Numerical
results are presented in Section 2.8, while concluding remarks are presented in Section 2.9.

2.4 Variational formulation of elements with drilling

DOFs

The focus of this chapter is the element sensitivity to the problem dependant parameter γ,
and not the variational formulation of the elements. It would therefore not be appropriate to
present details of the variational formulation of elements with drilling DOFs here, especially
since that information can be found in the references presented in Section 2.3. Instead, only
the functionals from which the elements used in this study are derived (as introduced in
[18]), are presented.

This presentation is merely to illustrate the framework wherein these elements are formu-
lated, as well as to act as an introduction to show how this framework for the elastostatic

 
 
 



www.manaraa.com

2.4. VARIATIONAL FORMULATION OF ELEMENTS WITH DRILLING DOFS 25

problem was extended for piezoelectricity in Chapter 3.

We proceed, as in [20], by defining Ω̄ as a closed and bounded domain occupied by a body
in three dimensional space. The interior part of Ω̄ is denoted by Ω and it’s boundary by
∂Ω, Ω ∪ ∂Ω = Ω̄. The measure of Ω is V and the measure of ∂Ω is S. V is the vector space
associated with the Euclidean point space and L the space of all linear applications of V
into V , which possesses inner product A ·B = tr(AtB), A,B ∈ L and At the transpose of
A (see [20]). Reference will also be made to subsets of L, namely S and W which contain,
respectively symmetric and skew-symmetric tensors in L.

The boundary ∂Ω, is split into two parts, ∂Ωu and ∂Ωt such that ∂Ωu ∪ ∂Ωt = ∂Ω and
∂Ωu ∩ ∂Ωt = ∅. On ∂Ωu displacements ū are prescribed, while on ∂Ωt the traction t̄ is
prescribed.2 The discussion is limited to linear elastic problems and discussion of boundary
conditions is omitted.3

In the most general case, the stress tensor, σ ∈ L (which is not a priori assumed to be
symmetric), the displacement vector field u, the skew-symmetric infinitesimal rotational
tensor, ψ ∈ W , and the strain tensor ε ∈ S are taken as dependent variables. The variational
formulation requires the rotations ψ, strains ε and stresses σ, together with the displacement
generalised derivatives ∇u, belong to the space of square-integrable functions over the region
Ω.

The Euclidean decomposition of a second-rank tensor is used, e.g.,

σ = symm σ + skew σ, (2.9)

where

symm σ =
1

2
(σ + σt), (2.10)

skew σ =
1

2
(σ − σt). (2.11)

The problem under consideration is now constructed as follows: Given f , the body force
vector, find u, ψ, σ and ε such that:

div σ + f = 0, (2.12)

skew σ = 0, (2.13)

ψ = skew∇u, (2.14)

ε = symm∇u, (2.15)

symm σ = c ε, (2.16)

for all x ∈ Ω. Equations (2.12) through (2.16) represent respectively, the linear and ro-
tational momentum balance equations, the definition of rotation in terms of displacement

2It is of course possible to have part of the boundary with both displacements and tractions prescribed,
as often used to simulate symmetry boundary conditions [55]. However, at no point are both forces and
displacements in coincident directions prescribed.

3Boundary conditions may be incorporated in the standard manner, e.g. see [16, 21, 56, 57], and will be
dealt with in more detail in Chapter 3.
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Hγ(u,ψ, skewσ, symmσ, ε)

H̃γ(u,ψ, symmσ, ε)

H(u,ψ, skewσ, symmσ, ε)π(u,ψ, skewσ)

πγ(u,ψ, skewσ)

π̃γ(u,ψ)

Πγ(u,ψ, skewσ, symmσ)

Π(u,ψ, skewσ, symmσ)

Π̃γ(u,ψ, symmσ)

symmσ = csymm∇u ε = symm∇u

skewσ = γ(skew∇u−ψ)

∑

γ

where fγ =
∑

γ(f) = f −
∫

Ω
1
2γ |skewσ|2dΩ

Figure 2.3: Relationship among functionals. (Figure from [18].)

gradient, the compatibility condition for strain in terms of displacement gradient and the
constitutive equations. The tensor of elastic stiffness is represented by c.

Reissner [40] presented a variational formulation for the boundary value problem reflected
in (2.12) to (2.16). However, this formulation is inappropriate for numerical applications.
The problems associated with Reissner’s formulation are summarised, and addressed in the
ground-breaking paper of Hughes and Brezzi [18]. Upon concluding their paper, a graphical
illustration of the relationships between the various functionals employed in their study is
given. These relations are repeated in Figure 2.3.

The functionals denoted H are used as a basis for Hu-Washizu type variational formula-
tions, while those denoted Π are used to construct Hellinger-Reissner like formulations. The
simplest functionals which ultimately result in ‘irreducible’ displacement-based formulations
are denoted π.

In particular, the functional denoted H is given explicitly by Hughes and Brezzi [18] as

H(u,ψ, skewσ, symmσ, ε) =
1

2

∫

Ω

cε · εdV +

∫

Ω

(symm∇u− ε) · symmσdV

+

∫

Ω

(skew∇u−ψ) · skewσdV −
∫

Ω

f · udV + Boundary Terms, (2.17)

where symmσ acts as a Lagrange multiplier enforcing the compatibility conditions and skewσ
enforces the relationship between ψ and u.

It can be shown that the functional H can be used to derive a Hellinger-Reissner like func-
tional Π by substituting ε = s σ into (2.17), where s = c−1 is the compliance tensor. Since
ε does not appear in the functional, the compatibility conditions are enforced in a strong
sense a priori. This connection is not illustrated in the original figure, see Figure 2.3. The
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functional Π is now given as

Π(u,ψ, skewσ, symmσ) = −1

2

∫

Ω

ssymmσ · symmσdV +

∫

Ω

symm∇u · symmσdV

+

∫

Ω

(skew∇u−ψ) · skewσdV −
∫

Ω

f · udV + Boundary Terms. (2.18)

A similar Π functional to that found in, for example [43, 58], is presented. This functional is
slightly different to the one suggested by Reissner [40] and used by Hughes and Brezzi as a
basis for their theory [18]. However, it results in the same Euler-Lagrange equations as the
one suggested by Reissner and Hughes and Brezzi.

Finally, as shown in Figure 2.3, the functional π can be derived by either substituting the
compatibility conditions into H or by substituting symmσ = c symm∇u into Π. The π
functional can then be trivially shown to be

π(u,ψ, skewσ) =
1

2

∫

Ω

csymm∇u · symm∇udV +

∫

Ω

(skew∇u−ψ) · skewσdV

−
∫

Ω

f · udV + Boundary Terms. (2.19)

The functionals which have been presented thus far are not appropriate for numerical im-
plementation. The Π functional suggested by Reissner in particular, was shown to have
stability problems in the discrete form [18]. The variational problem of Reissner was mod-
ified in order to preserve the stability of the discrete problem by the addition of the term
1
2γ

∫

Ω
|skewσ|2 dV [18], as depicted in Figure 2.3. The resulting Hu-Washizu type functional

Hγ, after the modification is thus given by

Hγ(u,ψ, skewσ, symmσ, ε) =
1

2

∫

Ω

cε · εdV +

∫

Ω

(symm∇u− ε) · symmσdV

+

∫

Ω

(skew∇u−ψ) · skewσdV − 1

2γ

∫

Ω

|skewσ|2dV −
∫

Ω

f · udV

+ Boundary Terms. (2.20)

The corresponding Hellinger-Reissner-like functional Πγ can be shown to be

Πγ(u,ψ, skewσ, symmσ) = −1

2

∫

Ω

ssymmσ · symmσdV +

∫

Ω

symm∇u · symmσdV

+

∫

Ω

(skew∇u−ψ) · skewσdV − 1

2γ

∫

Ω

|skewσ|2dV −
∫

Ω

f · udV

+ Boundary Terms, (2.21)

and the equivalent π functional including skewσ can be written as

πγ(u,ψ, skewσ) =
1

2

∫

Ω

csymm∇u · symm∇udV +

∫

Ω

(skew∇u−ψ) · skewσdV

− 1

2γ

∫

Ω

|skewσ|2dV −
∫

Ω

f · udV + Boundary Terms. (2.22)
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Finally, it is possible, and indeed attractive for the skew-symmetric part of the stress tensor
to be eliminated from the functionals by substituting skewσ = γ(skew∇u − ψ), which
appears as one of the Euler-Lagrange equations in the foregoing three functionals. The
resulting Hu-Washizu like functional can be shown to be

H̃γ(u,ψ, symmσ, ε) =
1

2

∫

Ω

cε · εdV +

∫

Ω

(symm∇u− ε) · symmσdV

+
γ

2

∫

Ω

|skew∇u−ψ|2dV −
∫

Ω

f · udV + Boundary Terms. (2.23)

Pimpinelli [20] used a slightly modified version of the H̃γ functional to derive a numerical
model based on the minimisation of his modified Hu-Washizu like functional. His element is
based in the framework of the assumed strain method of Simo and Rifai [59]. The Hellinger-
Reissner like equivalent, using the base functional Πγ is found to be

Π̃γ(u,ψ, symmσ) = −1

2

∫

Ω

ssymmσ · symmσdV +

∫

Ω

symm∇u · symmσdV

+
γ

2

∫

Ω

|skew∇u−ψ|2dV −
∫

Ω

f · udV + Boundary Terms. (2.24)

Finally, the resulting ‘irreducible’ functional with only displacement and in-plane rotations
as independent variables is

π̃γ(u,ψ) =
1

2

∫

Ω

csymm∇u · symm∇udV +
γ

2

∫

Ω

|skew∇u−ψ|2dV

−
∫

Ω

f · udV + Boundary Terms. (2.25)

It can be shown that for each of the elements implemented in this chapter, the patch test is
passed for any γ > 0 [18]. However, the parameter γ is problem dependent [18, 21], and its
sensitivity is detailed in this chapter.

Since not all of the elements resulting from the formulations just highlighted are implemented
here, Figure 2.4 depicts the links between the various functionals in relation to this study.
The functionals contained in the top row are those based on Reissner’s work [40], and
were shown to have stability issues in discrete form. They therefore do not form part
of this investigation. Also, although recently Pimpinelli [20] proposed an assumed strain
quadrilateral element with drilling degrees of freedom, based on a functional similar to H̃γ,
elements based on Hu-Washizu like functionals are beyond the scope of this study. The
elements considered in this study are based on the functionals enclosed by the solid line.
Details of the variational formulations and numerical implementations of these elements can
be found in many references, including [18, 21, 43] and are therefore not repeated here.

2.5 Finite element interpolation

In this section, the finite element interpolations employed in the elements arising from the
variational formulations pointed out in the foregoing are presented. For the sake of brevity,
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Hγ(u,ψ, skewσ, symmσ, ε)

H̃γ(u,ψ, symmσ, ε)

H(u,ψ, skewσ, symmσ, ε)π(u,ψ, skewσ)

πγ(u,ψ, skewσ)

π̃γ(u,ψ)

Πγ(u,ψ, skewσ, symmσ)

Π(u,ψ, skewσ, symmσ)

Π̃γ(u,ψ, symmσ)

Functionals considered in this study.

Hu-Washizu type functionals beyond the scope of this work.

Reissner type functionals possibly with problems in discrete form.

Figure 2.4: Applications of functionals proposed by Hughes and Brezzi in discrete form.

we refrain from giving the elemental stiffness matrices here, as they are easily derived through
application of stationary principles to the functionals presented in the previous section.4

It is required that the three distinct independent interpolation fields arising from the trans-
lations, rotations and the assumed stress field are interpolated.5 The standard element
displacement gradient operators follow [43, 53].

Consider a 4-node quadrilateral element with degrees of freedom as depicted in Figure 2.5.
The reference surface of the element is defined by

x =
4
∑

I=1

N e
I (r, s)xI , (2.26)

where x represents coordinates (x, y) and NI(r, s) are the isoparametric shape functions [60]

N e
I (r, s) =

1

4
(1 + rIr)(1 + sIs) ; I = 1, 2, 3, 4. (2.27)

The independent rotation field is interpolated as a standard bilinear field over each element:

θz ≡ ψh =
∑

e

4
∑

I=1

N e
I (r, s)ψi. (2.28)

The in-plane displacement approximation is taken as an Allman-type interpolation

(

ux

uy

)

= uh =
∑

e

4
∑

I=1

N e
I (r, s)uI +

∑

e

8
∑

I=5

NSe
I (r, s)

lJK

8
(ψK − ψJ)nJK , (2.29)

4Once again, these can be found in many references, including [21, 43, 52, 53].
5Since Hu-Washizu functionals are not considered, interpolation of strain or enhanced strain is not nec-

essary.
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Figure 2.5: Four node element with drilling degrees of freedom.

where lJK and nJK are the length and the outward unit normal vector on the element side
associated with the corner nodes J and K, i.e.

nJK =

{

n1

n2

}

=

{

cosαJK

sinαJK

}

, (2.30)

and
lJK = ((xK − xJ)2 + (yK − yJ)2)1/2. (2.31)

In the above, a FORTRAN-like definition of adjacent corner nodes is employed:

J = I − 4 ; K = mod(I, 4) + 1. (2.32)

In Equation (2.29) the serendipity shape functions are defined by

NSe
I (r, s) =

1

2
(1 − r2)(1 + sIs) ; I = 5, 7, (2.33)

NSe
I (r, s) =

1

2
(1 + rIr)(1 − s2) ; I = 6, 8. (2.34)

Employing matrix notation and defining

symm ∇ue = Be
IuI + Ge

IψI , (2.35)

where uI and ψI are nodal values of the displacement and the rotation fields, respectively.
The Be

I matrix in Equation (2.35) has the standard form

Be
I =





N e
I,x 0
0 N e

I,y

N e
I,y N e

I,x



 ; I = 1, 2, 3, 4, (2.36)
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where NI,x = ∂NI
∂x

. The part of the displacement interpolation associated with the rotation
defines

Ge
I =

1

8













(

lIJ cosαIJNS
e
L,x − lIK cosαIKNS

e
M,x

)

(

lIJ sinαIJNS
e
L,y − lIK sinαIKNS

e
M,y

)







lIJ cosαIJNS
e
L,y − lIK cosαIKNS

e
M,y

+
lIJ sinαIJNS

e
L,x − lIK sinαIKNS

e
M,x



















, (2.37)

where

I = 1, 2, 3, 4; M = I + 4; L = M − 1 + 4int(1/I);

K = mod(M, 4) + 1; J = L− 4, (2.38)

and

NSL,x =
∂NSL

∂x
.

Terms associated with the skew-symmetric part of the displacement gradient are now con-
sidered. Denoting

skew ∇ue − ψe = be
IuI + ge

IψI , (2.39)

where

be
I = < −1

2
N e

I,y

1

2
N e

I,x > ; I = 1, 2, 3, 4, (2.40)

and

ge
I = [− 1

16
(lIJ cosαIJNS

e
L,ylIK cosαIKNS

e
M,y)

+
1

16
(lIJ sinαIJNS

e
L,xlIK sinαIKNS

e
M,x) −N e

I ] ; I = 1, 2, 3, 4, (2.41)

with indices J, K, L, M again defined by (2.38)

For the assumed stress field, the global stresses are directly interpolated by the stress pa-
rameters βi, i.e.

symm σh =
∑

e

P eβe, (2.42)

where P e is the interpolation matrix in terms of the local coordinates and βe is the stress
parameter vector. The stress field assumed in (2.42) may, without loss of generality, be
expressed for an individual element as:

symm σe = Pβ = symm σe
c + symm σe

h = [Ic P h]

{

βc

βh

}

, (2.43)

where the superscript e is dropped on P ∗ and β
∗

for reasons of clarity. In (2.43), I c allows
for the accommodation of constant stress states required to pass the patch test. The higher
order stress field is represented by

symm σe
h = P hβh = P h2βh2 + P h3βh3, (2.44)
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where P h2βh2 and P h3βh3 are introduced for reasons of clarity. We select

P h2βh2 + P h3βh3 =





η 0
0 ξ
0 0





{

β4

β5

}

+





−ξ 0 η2

0 −η −ξ2

η ξ 0











β6

β7

β8







. (2.45)

Combined with Ic, P h2 yields the usual formulation for a 5-parameter stress field, as was
for instance also used by Di and Ramm [61], for their 5β elements. P h3 represents the
additional terms required for elements with drilling degrees of freedom. This formulation is
similar to the unconstrained field used by Sze and Ghali [50]. However, (2.42) represents
an unconstrained interpolation field, which is not necessarily optimal. Constraints may be
enforced by a suitable transformation matrix (e.g. see [61]). Here, the rational constraints
proposed by Pian and Sumihara [62] are opted for, viz.

symm σe
h = P hβh = T 0P h2βh2 + T 0P h3βh3, (2.46)

with

T 0 =





a2
1 a2

3 2a1a3

b21 b23 2b1b3
a1b1 a3b3 a1b3 + a3b1



 , (2.47)

and




a1 b1
a2 b2
a3 b3



 =
1

4





−1 1 1 −1
1 −1 1 −1

−1 −1 1 1













x1 y1

x2 y2

x3 y3

x4 y4









. (2.48)

While normalized transformation of the higher order part of the stress field is probably more
accurate [43], the rational approach of Pian and Sumihara is simpler, in particular if element
equilibrium is enforced.

Finally, 9 stress parameters may also be used, even though this is one more than the optimal
number of stress parameters. In this case, the higher order stress field becomes

P h3βh3 =





−ξ 0 η2 0
0 −η 0 −ξ2

η ξ 0 0



















β6

β7

β8

β9















. (2.49)

2.6 Stability analysis

After Hughes and Brezzi, the simplest form of the functionals considered in Section 2.4,
namely functional π̃γ(u,ψ) given by (2.25) is considered. The variational equation which
results from variations on (2.25) is

0 =δπ̃γ =

∫

Ω

c symm∇u · symm∇δudV

+ γ

∫

Ω

(skew∇u−ψ) · (skew∇δu− δψ)dV −
∫

Ω

f · δudV.

(2.50)
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Hughes and Brezzi then rewrite (2.50) as follows: Find {u,ψ} such that

Bγ(u,ψ; δu, δψ) = f({δu, δψ}), (2.51)

for arbitrary variations δu and δψ, where Bγ(u,ψ; δu, δψ) is in symmetric bilinear form,
and where f({v,ω}) is continuous. It is now possible to prove that Bγ is U -elliptic [18],
viz. there exists a constant ηU > 0, such that

Bγ(u,ψ; δu, δψ) ≥ ηU ||{δu, δψ}||2U , ∀ {δu, δψ} ∈ U, (2.52)

where U ≡ V × W , and V and W are appropriate spaces of displacement and rotation
functions. For the Dirichlet problem and isotropy (see Hughes and Brezzi [18] for details),
this results in

γ ≤ µ, (2.53)

with µ the shear modulus. The equality or upper bound represented by (2.53) was selected
by a number of authors. In Section 2.8, this bound is further reflected on from a numerical
point of view. Incidentally, the numerical approach was already suggested by Hughes and
Brezzi, who remark that ‘numerical experimentation will be useful in finding optimal values
for γ.’

2.7 Consistency and stability

It is well known that the elements with drilling DOFs considered herein all pass the patch
test; they are also of adequate rank. Hence they are unconditionally convergent. This is
true for any value of γ > 0 [18, 52].

This leads to the observation that the symmetry condition of the stress tensor should exactly
be achieved for problems characterized by constant states of strain, viz. skew ∇u−ψ = 0.
Numerical experimentation reveals that this is, to machine precision, indeed the case for
pure extension and pure shear patch tests, as well as the modified pure shear patch depicted
in Figure 2.6.

2.8 Numerical experiments

In this section, numerical results for the elements highlighted in the foregoing are presented.
The integration schemes employed on individual partition matrices are as given in [63].
The penalty matrix, relating displacements and in-plane rotations, is evaluated using a 1
point integration rule. The remaining partition stiffness terms are calculated using a 3 × 3
integration rule, although a reduced order (5 or 8 point) scheme could also be used. The
following denotation is used:

• Q4X denotes drill elements without assumed stress interpolation. Unless otherwise
stated, the mixed formulation, with functional represented by (2.22), is used.
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Figure 2.6: Modified shear patch test
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Figure 2.7: Cook’s membrane

• 8β and 9β respectively indicates assumed stress drill elements with 8 and 9 stress
interpolation parameters (see (2.45) and (2.49)). Unless otherwise stated, results are
presented for the displacement formulation, this time represented by (2.24).

2.8.1 Cook’s membrane

The popular swept and tapered cantilever beam subjected to a uniformly distributed tip
load, as originally proposed by Cook, is depicted in Figure 2.7. Results as a function of
parameter γ, are depicted in Figures 2.8 and 2.9, for respectively a 4×4 and a 32×32 mesh.
At γ = µ there is a distinct change in slope of the beam tip displacement and rotation curves.
The maximum value of skewσ over all elements, denoted τ0 in the figures, is also reported
(normalized with respect to it’s value at γ = µ). The value of τ0 clearly increases sharply as
γ increases above µ, and it is obvious that γ ≤ µ is required. However, the equality is not
necessarily optimal, γ = µ/10, µ/100, or even µ/1000, may be more accurate.
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Figure 2.8: Cook’s membrane: Effect of γ on displacement, rotation and skew σ for the 4×4
mesh

2.8.2 Cantilever beam subjected to end shear

A further popular test problem is the shear loaded cantilever beam depicted in Figure 2.10.
For the penalty γ, a similar trend is observed to that of Cook’s membrane above (Figure
2.11). Again the effect of γ is not nearly as pronounced on rotation and displacement as on
the skew part of the stress tensor, and values of γ < µ seem suitable, rather than γ = µ.

2.8.3 Orthotropic membrane cantilever

Next the orthotropic cantilever, depicted in Figure 2.12, is considered. Even though only
one layer is considered, the strain variation becomes quite complex for non-zero ply angle
arrangements [43].

Numerical results for the parameter γ are presented in Figures 2.13 and 2.14, for a ply
arrangement of respectively 0 and 30 degrees. The displacement and rotation results are
normalized with respect to solutions computed using a refined finite element mesh. For 0
degrees, the displacement based and stress based elements are almost identical (which is not
surprising, since the mesh is regular).

For the 30 degrees orientation, the displacement and rotation prediction of the stress based
element is superior, while this element also predicts a lower value of skewσ. On the scale
of the graphs, it is not very obvious how sensitive the displacement results are to the value
of γ, however, results may differ by some 5% as a result of different values of γ. For this
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Figure 2.9: Cook’s membrane: Effect of γ on displacement, rotation and skew σ for the
32 × 32 mesh

problem, it is clear that γ = µ12 is no longer ideal; values of γ = µ12/103 or even µ12/104

seem superior.

For the irregular distorted mesh, results are depicted in Figure 2.15. While the mesh dis-
tortion is probably a bit extreme, the effect of γ is illustrated clearly. Element performance
starts to degrade from roughly γ = µ/10000, and the degradation is quite pronounced. For
this problem, the loss in accuracy of displacements, rotations as well as skewσ due to high
values of γ is significant.

2.9 Conclusions

In this chapter, the formulation of finite elements with drilling DOFs has briefly been out-
lined. Thereafter, a numerical investigation into the effect of the penalty parameter in
elements with drilling degrees of freedom, for which the stress tensor σ is not a priori as-
sumed to be symmetric, has been presented. The parameter under investigation is γ, which
relates the in-plane translations to the rotations.

Rather than only reporting on the quantitative influence of the penalty parameter γ on
measures like displacement, rotation and stress, the skewness of the nonsymmetric part
of the stress tensor σ, is directly assessed. Results are presented for both isotropic and
orthotropic constitutive relationships.

It is shown that, in general, values smaller than γ = µ, with µ the shear modulus, are
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Figure 2.10: Cantilever beam under shear load

desirable, even though the formulation is convergent for all values of γ. Values of γ/µ = 10−1

or 10−2 seem to result in accurate solutions. However, in implementing elements with drilling
degrees of freedom based on the procedure suggested by Hughes and Brezzi [18], the skewness
of the nonsymmetric part of the stress tensor σ, may directly be used to quantitatively assess
the validity of selected values of γ.
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Figure 2.13: Orthotropic membrane cantilever: Effect of γ for a 0 degree ply arrangement
(regular mesh)
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Chapter 3

Piezoelectric elements with drilling
degrees of freedom

3.1 Summary

In this chapter, several new planar four node piezoelectric elements with drilling degrees of
freedom are presented. Firstly, two families of variational formulations accounting for piezo-
electricity and in-plane rotations are derived. The first family retains the skew-symmetric
part of the stress tensor, while in the second, the skew part of stress is eliminated from the
functional. The performance of the finite elements derived from the variational formulations
presented in this chapter are then investigated. The resulting new elements are shown to be
accurate and robust in comparison with a number of existing elements, for several benchmark
test problems.

3.1.1 Another brief word on notation

As explained in Section 2.1.1, the symbolic designation traditionally used by researchers
working in piezoelectric finite element development, e.g. see [64, 65, 66] is now reverted to.
In particular, the symbols used to denote mechanical quantities and properties are different
to those employed in Chapter 2. Once again, the symbols are defined during the course of
the chapter.

We continue to employ the same tensor notation as that introduced in Chapter 2, which is
similar to that employed by, for example, Pimpinelli [20] and Cannarozzi and Ubertini [66].

3.2 Introduction

In recent years, the use of smart materials has become widespread and almost commonplace.
The technology employed in piezoelectric applications in particular, has reached a mature
level, and piezoelectric materials are frequently used in engineering applications.

41
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Piezoelectric materials transfer electric energy to mechanical energy and vice versa, and
can therefore be used as either actuators or sensors, or both. Applications include ultra-
sonic transducers for sonar and medical purposes, compact ultrasonic piezoelectric motors,
structural monitoring and/or active damping elements, and even ignition systems.

Analytical closed-form solutions to problems involving piezoelectric materials are often dif-
ficult to compute, unless geometries and boundary conditions are relatively simple, see for
example Heyliger [67] and Kapuria et al. [68]. A general numerical method for the solu-
tion of piezoelectric problems is therefore essential. (Analytical solutions are, however, very
useful as benchmark problems.)

The finite element method has become a standard modelling utility for various physical
processes, including piezoelectricity. Development of piezoelectric finite elements has pro-
gressed significantly since the early paper of Allik and Hughes [69]. In fact, Benjeddou
[70] presented a survey article in which over 100 recent papers from the open literature are
reviewed, indicating the research interest in the field.

The original implementation of Allik and Hughes, and many of the finite elements since, (see
Benjeddou for examples), have been based on formulations interpolating for only kinematic–
like variables, i.e. displacement and electric potential. These elements are often stiff, inac-
curate and sensitive to mesh distortion. To alleviate these problems, mixed and hybrid vari-
ational formulations have been developed (see for example Yang [71]), with original contri-
butions in variational formulations for piezoelectric media credited to EerNisse and Holland
[72, 73]. Various hybrid and mixed finite elements have since been developed, with notable
contributions by Cannarozzi and Ubertini [66] and Sze and co-workers [64, 65, 74, 75, 76].

Independent of the development of piezoelectric finite elements, many advances have been
made in the development of elastic finite elements. One of the significant contributions has
been the addition of in-plane rotations, or drilling degrees of freedom (DOFs). Drilling DOFs
are particularly important in shell elements, since the result is a shell element with six DOFs
per node, which allows for the modelling of beam-slab connections and folded plates. An
introduction into, and a brief history of, elements with drilling DOFs and their variational
formulation can be found in Chapter 2, and will therefore not be repeated here.

The aim of this chapter is to combine the theory, developed for elastic elements with drilling
DOFs, with some recent advances in piezoelectric finite element technology. The result is
two new families of accurate, piezoelectric finite elements with drilling DOFs.

We endeavour to, not only improve on element accuracy, but importantly, improve on the
modelling capabilities of existing piezoelectric finite elements. In fact, the piezoelectric
elements developed herein are used in a topology optimization environment, together with
elastic elements possessing drilling DOFs, see Chapter 5 and [77]. Their accuracy can also
be exploited in fracture analyses. Aside from the improved accuracy, these elements can
be employed to calculate through-thickness phenomena in thick piezoelectric shells. The
variational formulations can also be used to generate three dimensional solid elements with
drilling DOFs. These solid elements would possess three displacement, three rotational and
one potential DOF per node.

The remainder of this chapter is set out as follows. In Section 3.3, the equations governing
the linear electroelastic problem are presented. Section 3.4 introduces a number of new
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variational formulations accounting for piezoelectricity and in-plane rotations. In Section
3.5 the interpolations used in the finite element implementations are briefly highlighted.
Section 3.6 details the finite element implementation of our variational formulations. The
partitioned submatrices arising from the finite element implementations are presented in
Section 3.7. Section 3.8 contains the results of a numerical evaluation of the new elements.
Finally, in Section 3.9 some closing remarks are offered.

3.3 Governing equations

In this section, the equations governing the linear electroelastic problem are presented in
strong form. Let Ω̄ be a closed and bounded domain occupied by a body in three dimensional
space. The interior part of Ω̄ is denoted by Ω and it’s boundary by ∂Ω, Ω ∪ ∂Ω = Ω̄. The
measure of Ω is V and the measure of ∂Ω is S. V is the vector space associated with the
Euclidean point space and L the space of all linear applications of V into V , which possesses
inner product A ·B = tr(AtB), A,B ∈ L and At the transpose of A (see Pimpinelli [20]).
Reference will also be made to subsets of L, namely S and W which contain, respectively
symmetric and skew-symmetric tensors in L.

The boundary ∂Ω, is split into four parts, ∂Ωu, ∂Ωt, ∂Ωφ and ∂Ωd such that ∂Ωu∪∂Ωt =∂Ωφ∪
∂Ωd = ∂Ω and ∂Ωu ∩ ∂Ωt =∂Ωφ ∩ ∂Ωd = ∅. On ∂Ωu displacements ū are prescribed, while
on ∂Ωt the traction t̄ is prescribed. Similarly, on ∂Ωφ the prescribed potentials are φ̄ and on
∂Ωd the density of the electric charge d̄ is prescribed.

The Euclidean decomposition of second-rank tensors is frequently employed, e.g.

T = symmT + skewT , (3.1)

where

symmT =
1

2
(T + T t), (3.2)

skewT =
1

2
(T − T t). (3.3)

The linear electroelastic problem is governed by the following conditions at all points x ∈ Ω̄.

3.3.1 Constitutive equations

There exist four equivalent versions of the electroelastic constitutive equations, depending on
the choice of independent variables (see for example Ikeda [78]). The constitutive equations,
in terms of strain and electric field are:

T = cES − etE,

D = eS + εSE,
(3.4)

where T and S are the stress and strain tensors, D is the electric flux density, also referred
to as electric displacement (see for example Wu et al. [65]), and E denotes the electric
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field. Furthermore, cE is a fourth order tensor of elastic stiffness, measured at constant
electric field as indicated by the subscript ‘E’. εS is the second order permittivity tensor at
constant strain, and e is a third order electroelastic, or piezoelectric, coupling tensor. Both
cE and εS are symmetric and positive definite. As described by Cannarozzi and Ubertini
[66], e is such that the product eta is a second order symmetric tensor for each vector a,
with et defined as A · eta = eA · a, and A a symmetric second order tensor. Incidentally,
the constitutive relations in terms of strain and electric field were used in the original finite
element implementations [69].

Since the derivation of the other forms of the constitutive equations, through Legendre
transformation, are well known (see for example [66, 78]) they will simply be stated here
without further elaboration.

In terms of strain S and electric flux density D, the relations are

T = cDS − htD,

E = −hS + χSD,
(3.5)

and the constitutive terms are computed as

cD = cE + etε−1
S e, h = ε−1

S e, χS = ε−1
S . (3.6)

Rewriting in terms of stress T and electric field E, get

S = sET + dtE,

D = dT + εTE,
(3.7)

with

sE = c−1
E , d = ec−1

E , εT = εS + ec−1
E e

t. (3.8)

Finally, with stress T and electric flux density D selected as independent variables, the
result is

S = sDT + gtD,

E = −gT + χTD,
(3.9)

with

sD = (cE + etε−1
S e)

−1, g = ε−1
S esD, χT = ε−1

S − ε−1
S esDe

tε−1
S . (3.10)

The tensors cD, sE, sD, χS, χT and εT are all symmetric and positive definite, and h, d
and g are third order tensors with the same properties as e. In the presentation of the
constitutive equations a condensed notation, assuming symmetric stress and strain tensors
is used for the sake of clarity. That is to say, in (3.4), (3.5), (3.7) and (3.9), T ≡ symmT
and S ≡ symmS. This is of importance, since the stress tensor in the formulations to follow
are not a priori assumed to be symmetric.
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3.3.2 Compatibility conditions

The strain-displacement and electric field-potential relationships, together with the displace-
ment and electric potential boundary conditions are, respectively

S = symm∇u in Ω, (3.11)

E = −∇φ in Ω, (3.12)

u = ū on ∂Ωu, (3.13)

φ = φ̄ on ∂Ωφ, (3.14)

where u is the displacement vector field, and φ represents the scalar electric potential field.

3.3.3 Equilibrium conditions

The static force equilibrium equations and Gauss’s Law in differential form, together with
the boundary conditions, are given by:

divT + f = 0 in Ω, (3.15)

divD − q = 0 in Ω, (3.16)

symmT n = t̄ on ∂Ωt, (3.17)

D · n = −d̄ on ∂Ωd, (3.18)

where f is a distributed body force, q is a distributed electric charge in Ω, and n is the unit
outward normal vector on ∂Ω. Usually q is taken as zero [71], but for completeness it will
be included in the presentation to follow.

3.3.4 Rotational momentum balance conditions and definition of
infinitesimal rotation

In the current formulation, the stress tensor T is not a priori assumed to be symmetric, and
in-plane rotations are included. The following two additional conditions need to be satisfied:

skewT = 0 in Ω, (3.19)

ψ = skew∇u in Ω, (3.20)

where (3.19) represents the rotational momentum balance conditions and (3.20) is the defi-
nition of infinitesimal rotations in terms of displacement gradient.

3.4 Variational formulation

Hughes and Brezzi [18] presented a general framework within which to construct variational
formulations for problems which include rotational freedom. This framework is outlined in
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Section 2.4. The most general type is their Hu-Washizu-like variational formulation account-
ing for rotations and nonsymmetric stress tensors. The variational framework of Hughes and
Brezzi is now generalised to account for the piezoelectric effect.

In the functionals to follow, unless otherwise stated, u, φ,E and D are the displacement,
electric potential, electric field and electric flux density fields, respectively. The nonsym-
metric stress tensor is denoted T ∈ L. The skew-symmetric infinitesimal spin or rotation
tensor is ψ ∈ W , and S ∈ S is the symmetric strain tensor. Where applicable, they are suf-
ficiently regular and square integrable functions of x. In particular, the rotations ψ, strains
S, stresses T , electric field E, electric flux density D, as well as the generalised derivatives
∇u and ∇φ belong to the space of square integrable functions over Ω.

3.4.1 Hu-Washizu-like variational formulations

A Hu-Washizu-like variational formulation is now proposed. It is also shown how this leads
to a Hellinger-Reissner-like functional, as well as functionals in an irreducible form. The aim
is not to present a rigorous mathematical study of the presented formulations. Rather, in the
latter part of this chapter, a numerical study of the discrete finite element implementation
is presented.

Two formulation families are proposed. The first, designated here as M-Type, retains the
skew-symmetric part of the stress tensor. Since part of the stress tensor is always retained,
even in its simplest or irreducible form, M-Type functionals will result in a mixed formulation,
even in the ‘irreducible’ form. In the second family, denoted K-Type, the skew-symmetric
part of stress is eliminated. The result is an irreducible form which requires only kinematic–
like interpolations, i.e. displacement and electric potential.

M-Type formulation based on functional ΠH
M

The following Hu-Washizu-like functional is proposed:

ΠH
M(u,ψ, symmT , skewT ,S, φ,D,E) =

1

2

∫

Ω

cE S · S dV −
∫

Ω

e S ·E dV

− 1

2

∫

Ω

εS E ·E dV +

∫

Ω

(symm∇u− S) · symmT dV +

∫

Ω

(skew∇u−ψ) · skewT dV

+

∫

Ω

(∇φ+E) ·D dV − 1

2
γ−1

∫

Ω

|skewT |2 dV −
∫

Ω

f · u dV +

∫

Ω

q φ dV

−
∫

∂Ωt

t̄ · u dS +

∫

∂Ωd

d̄ φ dS −
∫

∂Ωu

(u− ū) · (T n) dS −
∫

∂Ωφ

(φ− φ̄)(D · n) dS,

(3.21)

where the subscript ‘M ’ emphasises that the functional is of M-type and the superscript
‘H’ that it is a Hu-Washizu-like functional. The term 1

2
γ−1

∫

Ω
|skewT |2 dV was shown to

preserve the ellipticity of the discrete problem in linear elastostatics [18]. In (3.21), the term
Tn in the boundary term on ∂Ωu was found to be the Lagrange multiplier which enforces
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the prescribed displacements, where T ≡ symmT + skewT . The condition of stationarity
gives rise to the following variational equation:

δΠH
M = 0 =

∫

Ω

cES · δS dV −
∫

Ω

eS · δE dV −
∫

Ω

etE · δS dV −
∫

Ω

εSE · δE dV

+

∫

Ω

(symm∇u− S) · symmδT dV +

∫

Ω

symmT · symm∇δu− symmT · δS dV

+

∫

Ω

(skew∇u−ψ) · skewδT dV +

∫

Ω

skewT · skew∇δu− skewT · δψ dV

+

∫

Ω

(∇φ+E) · δD dV +

∫

Ω

D · ∇δφ+D · δE dV −
∫

Ω

γ−1skewT · skewδT dV

−
∫

Ω

f · δu dV +

∫

Ω

qδφ dV −
∫

∂Ωt

t̄ · δu dS +

∫

∂Ωd

d̄δφ dS

−
∫

∂Ωu

[(u− ū) · (δTn) − (Tn) · δu] dS

−
∫

∂Ωφ

[

(φ− φ̄)(δD · n) − (D · n)δφ
]

dS.

(3.22)

Applying the Gauss-Green identities, given by

∫

Ω

u · divT dV = −
∫

Ω

T · ∇u dV +

∫

∂Ω

u · Tn dS (3.23)
∫

Ω

φ divD dV = −
∫

Ω

D · ∇φ dV +

∫

∂Ω

φ(D · n) dS, (3.24)

and gathering like terms results in

0 =δΠH
M =

∫

Ω

(cE S − et E − symmT ) · δS dV −
∫

Ω

(e S + εS E −D) · δE dV

+

∫

Ω

(symm∇u− S) · symmδT dV +

∫

Ω

(skew∇u−ψ − γ−1skewT ) · skewδT dV

−
∫

Ω

skewT · δψ dV +

∫

Ω

(∇φ+E) · δD dV −
∫

Ω

(divT + f) · δu dV

−
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(T n− t̄) · δu dS +

∫

∂Ωd

(D · n+ d̄)δφ dS

−
∫

∂Ωu

(u− ū) · (δT n) dS −
∫

∂Ωφ

(φ− φ̄)(δD · n) dS.

(3.25)

All of the necessary Euler-Lagrange equations appear in (3.25). The variation δψ enforces
skewT = 0 in Ω, while skewδT enforces compatibility between rotations and the skew part
of the displacement gradient.

 
 
 



www.manaraa.com

48 CHAPTER 3. PIEZOELECTRIC ELEMENTS WITH DRILLING DOFS

K-Type formulation based on functional ΠH
K

The skew-symmetric part of the stress tensor can be eliminated using the Euler-Lagrange
equation γ−1skewT = skew∇u−ψ in Ω, which appears in (3.25) as demonstrated by Hughes
and Brezzi [18], to obtain the K-type Hu-Washizu-like functional:

ΠH
K(u,ψ, symmT ,S, φ,D,E) =

1

2

∫

Ω

cE S · S dV −
∫

Ω

e S ·E dV

− 1

2

∫

Ω

εS E ·E dV +

∫

Ω

(symm∇u− S) · symmT dV +

∫

Ω

(∇φ+E) ·D dV

+
1

2
γ

∫

Ω

|skew∇u−ψ|2 dV −
∫

Ω

f · u dV −
∫

Ω

q φ dV −
∫

∂Ωt

t̄ · u dS

+

∫

∂Ωd

d̄ φ dS −
∫

∂Ωu

(u− ū) · (T n) dS −
∫

∂Ωφ

(φ− φ̄)(D · n) dS.

(3.26)

Note that in this case, the stress term T , in the Lagrange multiplier enforcing the dis-
placement boundary conditions on ∂Ωu is calculated as T = symmT + skewT , where
skewT = γ(skew∇u−ψ). The first variation (and gathering like terms) results in

δΠH
K = 0 =

∫

Ω

(cES − etE − symmT ) · δS dV −
∫

Ω

(eS + εSE −D) · δS dV

+

∫

Ω

(symm∇u− S) · symmδT dV −
∫

Ω

(γ(skew∇u−ψ)) · δψ dV

+

∫

Ω

(∇ψ +E) · δD dV −
∫

Ω

−(symmT + γ(skew∇u−ψ)) · (∇δu) + f · δu dV

−
∫

Ω

−D · ∇δφ− qδφ dV −
∫

∂Ωt

t̄ · δu dS +

∫

∂Ωd

d̄δφ dS

−
∫

∂Ωu

[(u− ū) · (δTn) − (Tn) · δu] dS −
∫

∂Ωφ

[

(φ− φ̄)(δD · n) − (D · n)δφ
]

dS.

(3.27)

After applying the Gauss-Green identities, the following result is achieved:

δΠH
K = 0 =

∫

Ω

(cE S − et E − symmT ) · δS dV −
∫

Ω

(e S + εS E −D) · δE dV

+

∫

Ω

(symm∇u− S) · symmδT dV −
∫

Ω

(γ(skew∇u−ψ)) · δψ dV

+

∫

Ω

(∇φ+E) · δD dV −
∫

Ω

(divT + f) · δu dV −
∫

Ω

(divD − q)δφ dV

+

∫

∂Ωt

(T n− t̄) · δu dS +

∫

∂Ωd

(D · n+ d̄)δφ dS

−
∫

∂Ωu

(u− ū) · (δT n) dS −
∫

∂Ωφ

(φ− φ̄)(δD · n) dS,

(3.28)

which again contains all the necessary Euler equations. Here, the variation δψ simultane-
ously enforces skewT = 0 in Ω and compatibility between rotations and the skew part of
displacement gradient.
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In the remainder of this section, it is demonstrated how these two Hu-Washizu like functionals
can be used to derive (two) irreducible functionals, (two) fully mixed Hellinger-Reissner like
functionals and (four) degenerate Hellinger-Reissner like functionals.

The two preceding formulations were presented in some detail. For brevity, the presenta-
tion of the variational formulations of the remaining proposed functionals will be abbre-
viated. Only the functional and the final resulting variational equations containing the
Euler-Lagrange equations will be presented.

3.4.2 Irreducible formulations

In order to simplify the formulation for finite element implementation, the irreducible forms
emanating from ΠH

M and ΠH
K are now derived. In the context of this work, by ‘irreducible’ it

is implied that the fewest independent variables for a given functional family are used. Of
course, u and φ are the only independent variables required to fully describe the electroelastic
problem since all other variables can be derived from these.1 However, the ‘irreducible’ finite
elements with drilling DOFs presented herein also require the in-plane rotation field ψ to
be included as an independent variable. Furthermore, the M-type functionals intentionally
retain skewT , even in irreducible form.

M-Type formulation based on functional ΠM

The irreducible form resulting from ΠH
M can be derived by substituting the mechanical and

electrical compatibilities (3.11) and (3.12) respectively into ΠH
M . Therefore, S = symm∇u,

and E = −∇φ are substituted into (3.21).

The resulting functional, which retains the skew-symmetric part of stress as an independent
variable, together with displacements, electric potentials and in-plane rotations, is:

ΠM(u,ψ, skewT , φ) =
1

2

∫

Ω

cE symm∇u · symm∇u dV +

∫

Ω

e symm∇u · ∇φ dV

− 1

2

∫

Ω

εS ∇φ · ∇φ dV +

∫

Ω

(skew∇u−ψ) · skewT dV − 1

2
γ−1

∫

Ω

|skewT |2 dV

−
∫

Ω

f · u dV +

∫

Ω

q φ dV −
∫

∂Ωt

t̄ · u dS +

∫

∂Ωd

d̄ φ dS,

(3.29)

where both u and φ are admissible, and therefore satisfy the essential boundary conditions.
Since the aforementioned substitution effectively eliminates strain and electric field as inde-
pendent variables, the compatibility between strain and displacement gradient and electric
field and potential gradient are enforced in a strong sense. Furthermore the symmetric part
of stress as well as electric flux density are also eliminated from the functional upon this sub-
stitution. Therefore the constitutive relations in (3.4) are also assumed to hold in a strong

1Not the fully story, stress and electric flux density or strain and electric field (or combinations) could
also theoretically be used as the independent variables.
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sense [16, 55]. After some algebra, the first variation of ΠM reduces to

δΠM = 0 =

∫

Ω

(skew∇u−ψ − γ−1skewT ) · skewδT dV −
∫

Ω

skewT · δψ dV

−
∫

Ω

(divT + f) · δu dV −
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(T n− t̄) · δu dS

+

∫

∂Ωd

(D · n+ d̄)δφ dS,

(3.30)

which again contains all the necessary Euler-Lagrange equations.

K-Type formulation: Functional ΠK

The K-type equivalent irreducible functional is derived using similar substitutions of the
compatibility conditions, this time into ΠH

K . The emerging functional, with only displace-
ments, in-plane rotations and electric potential as independent variables, can be shown to
be:

ΠK(u,ψ, φ) =
1

2

∫

Ω

cEsymm∇u · symm∇u dV +

∫

Ω

esymm∇u · ∇φ dV

− 1

2

∫

Ω

εS∇φ · ∇φ dV +
1

2
γ

∫

Ω

|skew∇u−ψ|2 dV −
∫

Ω

f · u dV

+

∫

Ω

qφ dV −
∫

∂Ωt

t̄ · u dS +

∫

∂Ωd

d̄φ dS,

(3.31)

where both u and φ are again admissible functions. Once again, the constitutive and compat-
ibility conditions are enforced in a strong sense. After applying the Gauss-Green identities
and grouping like terms, the resulting variational equation is given by:

δΠK = 0 = −
∫

Ω

γ(skew∇u−ψ) · δψ dV −
∫

Ω

(divT + f) · δu dV −
∫

Ω

(divD − q)δφ dV

+

∫

∂Ωt

(Tn− t̄) · δu dS +

∫

∂Ωd

(D · n+ d̄)δφ dS.

(3.32)

Recognising γ(skew∇u−ψ) as the skew-symmetric part of stress, once again all the necessary
Euler equations are contained in (3.32).

3.4.3 Fully mixed Hellinger-Reissner-like formulations

Strain S and electric field E can both be eliminated from the Hu-Washizu-like functionals
by substituting the constitutive relations in (3.9) into functionals ΠH

M and ΠH
K , resulting in

fully mixed Hellinger-Reissner-like functionals. Of course, since strain and electric field are
eliminated from the functional, their compatibility conditions are assumed a priori.
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M-Type formulation based on functional ΠTD
M

The constitutive relations in terms of stress T and electric flux density D are substituted
into ΠH

M , and the functional ΠTD
M is introduced. The superscripts ‘T ’ and ‘D’ represent the

additional independent variables (supplemental to the kinematic variables):

ΠTD
M (u,ψ, symmT , skewT , φ,D) = −1

2

∫

Ω

sD symmT · symmT dV −
∫

Ω

g symmT ·D dV

+
1

2

∫

Ω

χT D ·D dV +

∫

Ω

symm∇u · symmT dV +

∫

Ω

∇φ ·D dV

+

∫

Ω

(skew∇u−ψ) · skewT dV − 1

2
γ−1

∫

Ω

|skewT |2 dV −
∫

Ω

f · u dV

+

∫

Ω

q φ dV −
∫

∂Ωt

t̄ · u dS +

∫

∂Ωd

d̄ φ dS −
∫

∂Ωu

(u− ū) · (T n) dS

−
∫

∂Ωφ

(φ− φ̄)(D · n) dS.

(3.33)

After applying the Gauss-Green identities, the result of the first variation is

δΠTD
M = 0 = −

∫

Ω

(sD symmT + gt D − symm∇u) · symmδT dV

+

∫

Ω

(skew∇u−ψ − γ−1skewT ) · skewδT dV

+

∫

Ω

(−g symmT + χT D + ∇φ) · δD dV −
∫

Ω

skewT · δψ dV

−
∫

Ω

(divT + f) · δu dV −
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(T n− t̄) · δu dS

+

∫

∂Ωd

(D · n+ d̄)δφ dS −
∫

∂Ωu

(u− ū) · (δT n) dS −
∫

∂Ωφ

(φ− φ̄)(δD · n) dS,

(3.34)

where the Euler equation sD symmT + gt D = symm∇u weakly enforces the relationship
between strain derived from compatibility conditions (3.11), and strain based on stress and
electric flux density from constitutive equations (3.9). Similarly, −g symmT+χT D = −∇φ
enforces weakly the relationship between compatibility (3.12) and constitutive equations
(3.9) for electric field.

K-Type formulation: Functional ΠTD
K

The corresponding K-type fully-mixed functional can be derived by either making the sub-
stitutions of constitutive equations described previously to arrive at the ΠTD

M functional,
or through elimination of the skew-symmetric part of stress by substitution of skewT =
γ(skew∇u − ψ) which appears as one of the Euler equations in (3.34) into ΠTD

M . In either
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case, the resulting functional is

ΠTD
K (u,ψ, symmT , φ,D) = − 1

2

∫

Ω

sDsymmT · symmT dV −
∫

Ω

gsymmT ·D dV

+
1

2

∫

Ω

χTD ·D dV +

∫

Ω

symm∇u · symmT dV +

∫

Ω

∇φ ·D dV

+
1

2
γ

∫

Ω

|skew∇u−ψ|2 dV −
∫

Ω

f · u dV +

∫

Ω

qφ dV

−
∫

∂Ωt

t̄ · u dS +

∫

∂Ωd

d̄φ dS −
∫

∂Ωu

(u− ū) · (Tn) dS

−
∫

∂Ωφ

(φ− φ̄)(D · n) dS.

(3.35)

Once again, like terms are collected after taking the first variation, and apply the Gauss-
Green identities to arrive at the variational equation:

δΠTD
K = 0 = −

∫

Ω

(sDsymmT + gtD − symm∇u) · symmδT dV

+ (−gsymmT + χTD + ∇φ) · δD dV −
∫

Ω

γ(skew∇u−ψ) · δψ dV

−
∫

Ω

(divT + f) · δu dV −
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(Tn− t̄) · δu dS

+

∫

∂Ωd

(D · n+ d̄)δφ dS −
∫

∂Ωu

(u− ū) · (δTn) dS −
∫

∂Ωφ

(φ− φ̄)(δD · n) dS.

(3.36)

Again, the variation on ψ simultaneously enforces compatibility between the skew-symmetric
part of the displacement gradient and the rotation field, and the symmetry conditions for
stress. Once again all weak relationships necessary, are contained in (3.36).

3.4.4 Degenerate Hellinger-Reissner-like formulations

It is also possible to derive functionals with only stress T or electric flux densityD assumed,
additionally to u and φ, using the remaining forms of the constitutive equations, given in
(3.5) and (3.7). Since only stress or electric flux density are assumed, these functionals will
be referred to as degenerate.

M-Type formulation: Functional ΠD
M

If strain (and the symmetric part of stress) are eliminated from ΠH
M by substituting S =

symm∇u, and if electric field is eliminated by substituting the second equation of (3.5) into
ΠH

M , the M-type Hellinger-Reissner like functional which results is:
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ΠD
M(u,ψ, skewT , φ,D) =

1

2

∫

Ω

cD symm∇u · symm∇u dV −
∫

Ω

h symm∇u ·D dV

+
1

2

∫

Ω

χS D ·D dV +

∫

Ω

(skew∇u−ψ) · skewT dV +

∫

Ω

∇φ ·D dV

− 1

2
γ−1

∫

Ω

|skewT |2 dV −
∫

Ω

f · u dV +

∫

Ω

q φ dV −
∫

∂Ωt

t̄ · u dS

+

∫

∂Ωd

d̄ φ dS −
∫

∂Ωφ

(φ− φ̄)(D · n) dS,

(3.37)

where the displacement field u is admissible. In this case, the compatibility between strain
and displacement gradient S = symm∇u, as well as the constitutive relationship between
stress and stain and electric flux density, symmT = cDS −htD are assumed to be enforced
in a strong sense.

Yet again, the first variation is computed, and after applying integration by parts, the
resulting variational statement is

δΠD
M = 0 =

∫

Ω

(skew∇u−ψ − γ−1skewT ) · skewδT dV

−
∫

Ω

(hsymm∇u− χSD − ∇φ) · δD dV −
∫

Ω

skewT · δψ dV

−
∫

Ω

(divT + f) · δu dV −
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(Tn− t̄) · δu dS

+

∫

∂Ωd

(D · n+ d̄)δφ dS −
∫

∂Ωφ

(φ− φ̄)(δD · n) dS.

(3.38)

Once again (3.38) enforces all the necessary relations in a weak sense. In particular the
arbitrary variation on D weakly enforces the relationship between electric field in terms of
potential gradient and electric field in terms of its constitutive definition in (3.5).

K-Type formulation: Functional ΠD
K

Once again, the skew-symmetric part of stress can be eliminated from ΠD
M by substituting

the Euler equation in terms of the skew-stress, which appears in (3.38), to produce ΠD
K .

Alternatively, ΠD
K can be derived from ΠH

K by making the appropriate substitutions, described
in the derivation of ΠD

M . The K-type functional with displacement, electric potential, in-
plane rotations and electric flux density as independent variables is found to be:
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ΠD
K(u,ψ, φ,D) =

1

2

∫

Ω

cDsymm∇u · symm∇u dV −
∫

Ω

hsymm∇u ·D dV

+
1

2

∫

Ω

χSD ·D dV +

∫

Ω

∇φ ·D dV +
1

2
γ

∫

Ω

|skew∇u−ψ|2 dV

−
∫

Ω

f · u dV +

∫

Ω

qφ dV −
∫

∂Ωt

t̄ · u dS +

∫

∂Ωd

d̄φ dS

−
∫

∂Ωφ

(φ− φ̄)(D · n) dS,

(3.39)

where u is again admissible. Following the same process as previously, after taking the
first variation, applying the Gauss-Green identities, and collecting like terms, the resulting
variational statement is given by

δΠD
K = 0 = −

∫

Ω

(hsymm∇u− χSD − ∇φ) · δD dV −
∫

Ω

γ(skew∇u−ψ) · δψ dV

−
∫

Ω

(divT + f) · δu dV −
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(Tn− t̄) · δu dS

+

∫

∂Ωd

(D · n+ d̄)δφ dS −
∫

∂Ωφ

(φ− φ̄)(δD · n) dS,

(3.40)

which yet again contains all the necessary Euler-Lagrange equations.

M-Type formulation: Functional ΠT
M

If on the other hand, electric field (and electric flux density) are eliminated from ΠH
M by

substituting E = −∇φ, and if strain is eliminated by substituting the first equation of (3.7)
into ΠH

M , a functional with symmT assumed is achieved.

ΠT
M(u,ψ, symmT , skewT , φ) = −1

2

∫

Ω

sE symmT · symmT dV +

∫

Ω

d symmT · ∇φ dV

− 1

2

∫

Ω

εT ∇φ · ∇φ dV +

∫

Ω

symm∇u · symmT dV +

∫

Ω

(skew∇u−ψ) · skewT dV

− 1

2
γ−1

∫

Ω

|skewT |2 dV −
∫

Ω

f · u dV +

∫

Ω

q φ dV −
∫

∂Ωt

t̄ · u dS

+

∫

∂Ωd

d̄ φ dS −
∫

∂Ωu

(u− ū) · (T n) dS,

(3.41)

where φ is admissible. In this instance, the constitutive equation D = dsymm + εTE and
compatibility condition E = −∇φ require enforcement in a strong sense. Yet again, after
some calculations, the first variation ultimately results in
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δΠT
M = 0 =

∫

Ω

−(sEsymmT − dt
∇φ− symm∇u) · symmδT dV −

∫

Ω

skewT δψ dV

+

∫

Ω

(skew∇u−ψ − γ−1skewT ) · skewδT −
∫

Ω

(divT + f) · δu dV

−
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(Tn− t̄) · δu dS +

∫

∂Ωd

(D · n+ d̄)δφ dS

−
∫

∂Ωu

(u− ū) · (δTn) dS.

(3.42)

The variational statement in (3.42) once yet again weakly enforces all necessary relationships.
In this instance, variations on symmT weakly enforces the relationship between strain derived
from displacement gradient and strain contained in the constitutive equations in (3.7).

K-Type formulation: Functional ΠT
K

Finally, the K-type counterpart of (3.41) can be constructed by either eliminating the skew
symmetric part of stress from ΠT

M or by making the appropriate substitutions in ΠH
K (see

Figure 3.1 and Section 3.4.5 for details).

ΠT
K(u,ψ, symmT , φ) = − 1

2

∫

Ω

sEsymmT · symmT dV +

∫

Ω

dsymmT · ∇φ dV

− 1

2

∫

Ω

εT ∇φ · ∇φ dV +

∫

Ω

symm∇u · symmT dV

+
1

2
γ

∫

Ω

|skew∇u−ψ|2 dV −
∫

Ω

f · u dV +

∫

Ω

qφ dV

−
∫

∂Ωt

t̄ · u dS +

∫

∂Ωd

d̄φ dS −
∫

∂Ωu

(u− ū) · (Tn) dS,

(3.43)

where φ is admissible. Following the same process as before, the first variation can be shown
to reduce to

δΠT
K = 0 =

∫

Ω

−(sEsymmT − dt
∇φ− symm∇u) · symmδT dV

−
∫

Ω

γ(skew∇u−ψ) · δψ dV −
∫

Ω

(divT + f) · δu dV

−
∫

Ω

(divD − q)δφ dV +

∫

∂Ωt

(Tn− t̄) · δu dS +

∫

∂Ωd

(D · n+ d̄)δφ dS

−
∫

∂Ωu

(u− ū) · (δTn) dS,

(3.44)

which once yet again weakly enforces all necessary conditions.
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ΠH(u,ψ, symmT ,S, φ,D,E) ΠH
M (u,ψ, symmT , skewT ,S, φ,D,E) ΠH

K(u,ψ, symmT ,S, φ,D,E)

ΠM (u,ψ, skewT , φ)Π(u,ψ, φ) ΠK(u,ψ, φ)

ΠD
M (u,ψ, skewT , φ,D)ΠD(u,ψ, φ,D) ΠD

K(u,ψ, φ,D)

ΠT
M (u,ψ, symmT , skewT , φ)ΠT (u,ψ, symmT , φ) ΠT

K(u,ψ, symmT , φ)

ΠTD
M (u,ψ, symmT , skewT , φ,D)ΠTD(u,ψ, symmT , φ,D) ΠT D

K (u,ψ, symmT , φ,D)
E = −gsymmT + χTD

S = sDsymmT + gtD

skewT = γ(skew∇u−ψ)
P

M

E = −∇φ

S = symm∇u

S = sEsymmT + dtE

E = −∇φ

S = symm∇u

E = −hS + χSD

D = eS + εSE

E = −∇φ

and where fM =
P

M (f) = f −
R

Ω

1

2γ
|skewT |2dΩ

S = symm∇u

where

symmT = cES − etE

symmT = cES − etE

where

E = −∇φ

D = eS + εSE

where
S = symm∇u

E = −∇φ

S = symm∇u

Figure 3.1: Relationships between the functionals.
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In all, ten new functionals have been introduced in this section. At this point, a summary
of the relationships between the functionals is appropriate, since not all of the relationships
have explicitly been detailed in the foregoing.

3.4.5 Relationships between the functionals

In Figure 3.1 the relations between the various functionals are graphically depicted for the
piezoelectricity problem. This figure is similar to Figure 2.3 presented in Section 2.4 for the
elastostatic problem.

In total, 15 functionals are represented in Figure 3.1 arranged in five rows and three columns.
The top row contains the Hu-Washizu like functionals while the irreducible functionals are
represented in the second row. Rows three and four contain the degenerate Hellinger-Reissner
like functionals. Finally, the fully mixed functionals are presented in the fifth row from the
top (see Figure 3.2). The three families of functionals are contained in different columns.
The Reissner like functionals (not explicitly presented in this chapter) are contained in the
first column (from the left), the middle column contains the M-type functional while the
K-type functionals are represented in the column on the right hand side.

As indicated in Figure 3.1, the only difference between the Reissner like functionals and
the M-type functionals is the additional term

∫

Ω
1
2γ
|skewT |2 dV . Furthermore, K-Type

functionals can be derived from M-Type functionals by making the substitution skewT =
γ(skew∇u−ψ). These relations are indicated by the arrows above the respective columns.

In the preceding text, it has been shown that the irreducible, degenerate Hellinger-Reissner
and fully mixed Hellinger-Reissner functionals can be derived from the Hu-Washizu like
functional by making the substitutions as indicated by the arrows on the far right of Figure
3.2.

Finally it can also be shown that, within any of the three families (columns), both the
degenerate and fully mixed Hellinger-Reissner like functionals can be used as a basis to
derive the irreducible functionals. Specifically, if symmT = cE symm∇u + et ∇φ and
D = e symm∇u−εS ∇φ are substituted into the fully mixed functionals, the corresponding
irreducible functionals result. Similarly, if symmT = cE symm∇u + et ∇φ is substituted
into the degenerate functionals including stress, or ifD = e symm∇u−εS ∇φ is substituted
into the degenerate functionals including electric flux density, the irreducible functionals also
result. These relations are shown on the far left of Figure 3.1.

In this work, not all of the finite elements resulting from variational formulations of the 15
functionals depicted in Figure 3.1 have been implemented numerically. Figure 3.2 depicts
the relations between the functionals in terms of their finite element implementation in this
study.

As explained in Chapter 2, elastostatic formulations resulting from the functional of Reiss-
ner [40] are not suitable for implementation in discrete form, due to stability issues [18].
Numerical experiments confirmed that this is also the case for the piezoelectric problem.
Furthermore, assumed strain (and electric field) finite elements are beyond the scope of this
study. The Hu-Washizu like functionals in the top row of Figure 3.2 are therefore not im-
plemented. The eight elements based on the remaining functionals are all implemented, and
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ΠTD(u,ψ, symmT , φ,D) ΠTD

K
(u,ψ, symmT , φ,D)ΠTD

M
(u,ψ, symmT , skewT , φ,D)

ΠH(u,ψ, symmT ,S, φ,D,E) ΠH

M
(u,ψ, symmT , skewT ,S, φ,D,E) ΠH

K
(u,ψ, symmT ,S, φ,D,E)

ΠM (u,ψ, skewT , φ)Π(u,ψ, φ) ΠK(u,ψ, φ)

ΠD

M
(u,ψ, skewT , φ,D)ΠD(u,ψ, φ,D) ΠD

K
(u,ψ, φ,D)

ΠT

M
(u,ψ, symmT , skewT , φ)ΠT (u,ψ, symmT , φ) ΠT

K
(u,ψ, symmT , φ)

Hu-Washizu like
functionals

Irreducible
functionals

Degenerate Hellinger-
Reissner like functionals

Fully mixed Hellinger-
Reissner like functionals

Reissner like functionals possibly with problems in discrete form, and therefore not implemented.
Hu-Washizu like functionals whose finite element implementation is beyond the scope of this study.
Functionals implemented as finite elements in this study.

Figure 3.2: Relationships between the functionals in terms of their finite element implementation.

 
 
 



www.manaraa.com

3.5. FINITE ELEMENT INTERPOLATIONS 59

will be the focus of the remainder of this chapter.

3.5 Finite element interpolations

In this section the interpolations, used in the finite element implementation arising from
the functionals presented in Section 3.4, are briefly discussed. The scalar potential and the
independent rotation fields are interpolated as

φh =
∑

e

4
∑

i=1

N e
i (ξ, η)φi, (3.45)

ψh =
∑

e

4
∑

i=1

N e
i (ξ, η)ψi, (3.46)

respectively, with N e
i the standard bilinear shape functions. The in-plane displacement

approximation is taken as an Allman-type interpolation field, after Ibrahimbegovic et al.
[21]

{

u1

u2

}

= uh =
∑

e

4
∑

i=1

N e
i (ξ, η)ui +

ljk
8

∑

e

8
∑

i=5

NSe
i (ξ, η)(ψk − ψj)njk, (3.47)

with NSi the Serendipity shape functions. The hierarchical bubble shape function is not
included. Furthermore, ljk and njk denote the length and the outward unit normal vector
on the element side associated with the corner nodes j and k (see Figure 3.3), i.e.

njk =

{

n1

n2

}

=

{

cosαjk

sinαjk

}

, (3.48)

and
ljk = ((xk − xj)

2 + (yk − yj)
2)1/2. (3.49)

The indices in the above are explicitly given in Section 2.5.

The skew-symmetric stress field is chosen constant over the element, i.e.

skew T h =
∑

e

T e
0 . (3.50)

Using matrix notation, symm∇ue and skew∇ue are respectively given by

symm∇ue = Be
iui +Ge

iψi, (3.51)

and
skew∇ue = be

iui + ge
iψi. (3.52)

The operators arising from this interpolation are also summarised in Section 2.5, and are
therefore not repeated here. The ‘membrane locking correction’, due to Taylor [38] is used,
i.e. element strains are modified to become

symm∇ũe = Be
iui +

(

Ge
i −

1

Ωe

∫

Ωe
Ge

i dV

)

ψi. (3.53)
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Figure 3.3: A planar 4-node piezoelectric element with drilling rotations.

For interpolations of stress and electric flux density, the necessary (but not sufficient) con-
ditions for element stability are:

nβT ≥ nu −mu, (3.54)

nβD ≥ nφ −mφ, (3.55)

where nβT and nβD are the number of assumed stress and electric flux density modes, re-
spectively. Furthermore, nu and nφ are the number of displacement and potential modes,
respectively. The number of rigid body displacement modes is mu, and mφ represents the
single (constant potential) distribution resulting in zero field. The equality conditions in
(3.54) and (3.55) represent the optimal number of parameters in both cases.

For our planar elements with drilling degrees of freedom (DOFs), nu = 12, and nφ = 4. The
single potential distribution resulting in zero field means mφ = 1, and usually membrane
elements possess three rigid body modes (mu = 3). The optimal number of parameters
required is therefore nβT = 9 for stress and nβD = 3 for flux density. One more than
optimal, i.e. nβD = 4, parameters are required for interpolation of the electric flux density in
order to ensure the element is invariant [65]. Stability is achieved if no spurious zero energy
modes appear, viz. if rank sufficiency of the mechanical stiffness and dielectric stiffness
matrices is maintained [66].

Sze et al. [50, 51] presented a rank sufficient elastic element with drilling DOFs using only
8 interpolating stress modes, which appears to be one less than the optimal prescribed in
(3.54). However, nβT = 8 seems adequate, since mu in (3.54) is in fact equal to 4 and not 3.
The additional so-called θ1–mode (in which rotations at each node are equal) is intrinsic to
the reduced displacement interpolation. The strain corresponding to this state is zero.

Geyer and Groenwold [43] also presented a family of membrane elements with drilling DOFs,
some of which employ only 8 stress modes for interpolation and retain stability. Elements
with both 8 and 9 stress interpolating modes are tested.
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The assumed electric flux density vector is interpolated using

Dh =
∑

e

[

Ie
Dc Ae

DP
e
Dh

]

{

βe
Dc

βe
Dh

}

, (3.56)

where Ie
Dc is a 2 × 2 identity matrix to account for the constant flux density case and

βe
Dc are the corresponding parameters. Ae

D is a transformation matrix [65, 76, 79], and
P e

Dh represents the interpolation of the higher order part of charge density with βe
Dh the

corresponding parameters. Ae
D and P e

Dh are given explicitly as

Ae
D =

[

a1 a3

b1 b3

]

, (3.57)

where for each element, ai and bi are based on the nodal coordinates x and y and are given
by





a1 b1
a2 b2
a3 b3



 =
1

4





−1 1 1 −1
1 −1 1 −1

−1 −1 1 1













x1 y1

x2 y2

x3 y3

x4 y4









. (3.58)

The interpolation based on the local ξ − η coordinates is given by

P e
Dh =

[

η 0
0 ξ

]

. (3.59)

The interpolation for electric flux density Dh can therefore be given explicitly by

Dh =
∑

e

[

1 0 a1η a3ξ
0 1 b1η b3ξ

]{

βe
Dc

βe
Dh

}

. (3.60)

The assumed symmetric part of stress is similarly interpolated as

symmT h =
∑

e

[

Ie
Tc Ae

TP
e
Thn

]

{

βe
Tc

βe
Th

}

, (3.61)

where Ie
Tc is a 3×3 identity matrix accounting for a constant stress state, with corresponding

stress parameters βe
Tc. A

e
T is a transformation matrix given by

Ae
T =





a2
1 a2

3 2a1a3

b21 b23 2b1b3
a1b1 a3b3 a1b3 + a3b1



 . (3.62)

There are many other constraint matrices, (see for example Di and Ramm [61]), which can
be used, but are not considered here for the sake of brevity. Two different higher order stress
interpolations are implemented. The first has 8 (i.e. 5 non-constant) βT –parameters and
the other 9 (6 non-constant). The element with the 8 βT –parameters has a higher order
interpolation matrix given by

P e
Th5 =





η 0 −ξ 0 η2

0 ξ 0 −η −ξ2

0 0 η ξ 0



 , (3.63)
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which is similar to the field used by Sze and Ghali [50]. The element containing 9 βT –
parameters has a matrix given by

P e
Th6 =





η 0 −ξ 0 η2 0
0 ξ 0 −η 0 ξ2

0 0 η ξ 0 0



 . (3.64)

Alternative interpolations are given by Geyer and Groenwold [43].

3.6 Finite element implementation

For simplicity, in this section the boundary terms are neglected, but may be included in the
usual manner. The body charge, q, terms are also neglected, as is usually done [71]. In what
is to follow, uh, symmT h, skewT h, φh,Dh represent the interpolations for displacement, sym-
metric and skew-symmetric stress, electric potential and electric flux density, respectively.
The fields uh and φh satisfy the necessary boundary conditions, and ψh denotes the inter-
polated rotation field.

In our paper [80], due to space considerations, only two elements derived from the foregoing
variational formulations are presented. In this section however, all of eight new elements are
presented.

3.6.1 Irreducible piezoelectric elements with drilling DOFs

Firstly the two simplest (irreducible) finite elements are presented. The element originating
from the functional ΠM is denoted P4dM, while the K-type element derived from ΠK is
denoted P4dK.

P4dM element based on ΠM

We proceed by writing the discrete form of the first variation of ΠM in a matrix-like form,
similar to the notation used in [18, 21], as

0 =

∫

Ωh
(symm∇δuh)t · cE · (symm∇uh) dV +

∫

Ωh
(∇δφh)t · e · (symm∇uh) dV

+

∫

Ωh
(symm∇δuh)t · et · (∇φh) dV −

∫

Ωh
(∇δφh)t · εS · (∇φh) dV

+

∫

Ωh
(skewδT h)t · (skew∇uh −ψh) dV +

∫

Ωh
(skew∇δuh)t · skewT h

− (δψh)t · skewT h dV − γ−1

∫

Ωh
(skewδT h)t · skewT h dV −

∫

Ωh
(δuh)t · f dV.

(3.65)

Employing the interpolations and operators presented in Section 3.5, (3.65) can be written
in matrix notation, as:
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Ke
uu Ke

uφ he

[Ke
uφ]t −Ke

φφ 0

[he]t 0 −γ−1Ωe











a

φ

T e
0







=







f

0
0







; a =

{

u

ψ

}

. (3.66)

The skew symmetric part of the stress tensor can be eliminated on the element level using
static condensation, so that the system of equations necessary to solve the problem are

[

Ke
M

]

{

a

φ

}

=

{

f

0

}

, (3.67)

where

Ke
M =

[

Ke
uu + γ

Ωe
he[he]t Ke

uφ

[Ke
uφ]t −Ke

φφ

]

. (3.68)

Individual partitioned stiffness matrix terms are given in Section 3.7. Both K e
uu and Ke

uφ

are evaluated using a 5-point numerical integration scheme, while he and Ke
φφ employ a

standard 4-point scheme. The top left (12 × 12) portion of the stiffness matrix represents
the mechanical part. The 12 × 4 partition, denoted Ke

uφ, represents the piezoelectric part,
and the bottom right portion, −Ke

φφ, the 4 × 4 dielectric part of the stiffness matrix.

The skew part of the stress tensor (constant over each element) can be recovered as a post-
processing step, and is given by

T e
0 = γ

[he]ta

Ωe
. (3.69)

P4dK element based on ΠK

The element arising from the irreducible K-type functional is now derived. To this end, the
discrete form of δΠK can be written using the same notation as

0 =

∫

Ωh
(symm∇δuh)t · cE · (symm∇uh) dV +

∫

Ωh
(∇δφh)t · e · (symm∇uh) dV

+

∫

Ωh
(symm∇δuh)t · et · (∇φh) dV −

∫

Ωh
(∇δφh)t · εS · (∇φh) dV

+ γ

∫

Ωh
(skew∇δuh − δψh)t · (skew∇uh −ψh) dV −

∫

Ωh
(δuh)t · f dV.

(3.70)

The condensed matrix form of (3.70) can be directly written as:

[

Ke
K

]

{

a

φ

}

=

{

f

0

}

, (3.71)

where the expanded stiffness matrix is explicitly given by:

[

Ke
K

]

=

[

Ke
uu + P e Ke

uφ

[Ke
uφ]t −Ke

φφ

]

. (3.72)
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The individual partitioned stiffness matrices are again given in Section 3.7. In particular,
the matrix P e, which represents the second last term in (3.70), is evaluated using a single
point integration scheme.

3.6.2 Fully mixed piezoelectric element with drilling DOFs

The matrix form of the two fully-mixed finite elements can be derived similarly. The two
elements are denoted P4dMnTD and P4dKnTD, originating from the M- and K-type fully
mixed functionals, respectively. The n in the element denotation reflects the number of
stress β parameters.

P4dMnTD element based on ΠTD
M

Considering first the M-type element based on ΠTD
M , the discrete form of the first variation

of the functional can be written as:

0 = −
∫

Ωh
(symmδT h)t · sD · (symmT h) dV −

∫

Ωh
(δDh)t · g · (symmT h) dV

−
∫

Ωh
(symmδT h)t · gt · (Dh) dV +

∫

Ωh
(δDh)t · χT · (Dh) dV

+

∫

Ωh
(symmδT h)t · (symm∇uh) dV +

∫

Ωh
(symm∇δuh)t · (symmT h) dV

+

∫

Ωh
(δDh)t · (∇φh) dV +

∫

Ωh
(∇δφh)t · (δDh) dV

+

∫

Ωh
(skewδT h)t · (skew∇uh −ψh) dV

+

∫

Ωh
(skew∇δuh)t · skewT h − (δψh)t · skewT h dV

− γ−1

∫

Ωh
(skewδT h)t · skewT h dV −

∫

Ωh
(δuh)t · f dV.

(3.73)

The discrete version of the formulation can again be rewritten in matrix form as













0 0 he Ke
uT 0

0 0 0 0 Ke
φD

[he]t 0 −γ−1Ωe 0 0

[Ke
uT ]t 0 0 −KTDe

TT −KTDe
TD

0 [Ke
φD]t 0 −[KTDe

TD ]t KTDe
DD



































a

φ

T e
0

βTDe
T

βTDe
D























=























f

0
0
0
0























. (3.74)

This matrix form can be further condensed by eliminating T e
0 , βTDe

T and βTDe
D using static

condensation to arrive at:

[

KTDe
M

]

{

a

φ

}

=

{

f

0

}

, (3.75)
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where the stress and electric flux density β-parameters can be shown to be

{

βTDe
T

βTDe
D

}

=

[

KTDe
TT KTDe

TD

[KTDe
TD ]t −KTDe

DD

]−1 [
[Ke

uT ]t 0

0 [Ke
φD]t

]{

a

φ

}

, (3.76)

T e
0 is again given by (3.69), and the stiffness matrix for this element can be written as

KTDe
M =

[

γ
Ωe
he[he]t 0
0 0

]

+

[

Ke
uT 0
0 Ke

φD

] [

KTDe
TT KTDe

TD

[KTDe
TD ]t −KTDe

DD

]−1 [
[Ke

uT ]t 0

0 [Ke
φD]t

]

.

(3.77)
Again, individual partitioned stiffness matrix terms are given in Section 3.7. The partitioned
submatrices Ke

uT , KTDe
TT and KTDe

TD are calculated using a 5-point integration scheme, while
Ke

φD and KTDe
DD are evaluated using a 4-point scheme. The number of stress parameters in

βe
T (either 8 or 9) is denoted n in the element designation P4dMnTD.

P4dKnTD element based on ΠTD
K

Focusing now on the K-type fully mixed element, the discrete form of the variational equation
derived from ΠTD

K can be derived as:

0 = −
∫

Ωh
(symmδT h)t · sD · (symmT h) dV −

∫

Ωh
(δDh)t · g · (symmT h) dV

−
∫

Ωh
(symmδT h)t · gt · (Dh) dV +

∫

Ωh
(δDh)t · χT · (Dh) dV

+

∫

Ωh
(symmδT h)t · (symm∇uh) dV +

∫

Ωh
(symm∇δuh)t · (symmT h) dV

+

∫

Ωh
(δDh)t · (∇φh) dV +

∫

Ωh
(∇δφh)t · (δDh) dV

+ γ

∫

Ωh
(skew∇δuh − δψh)t · (skew∇uh −ψh) dV −

∫

Ωh
(δuh)t · f dV.

(3.78)

The matrix form of the discrete variational equation becomes









P e 0 Ke
uT 0

0 0 0 Ke
φD

[Ke
uT ]t 0 −KTDe

TT −KTDe
TD

0 [Ke
φD]t −[KTDe

TD ]t KTDe
DD

















a

φ

βTDe
T

βTDe
D









=









f

0
0
0









. (3.79)

The stiffness matrix can be compacted by condensing βTDe
T and βTDe

D out on the element
level, resulting in:

[

KTDe
K

]

{

a

φ

}

=

{

f

0

}

, (3.80)
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with the β-parameters, given by (3.76) and the stiffness matrix given by

KTDe
K =

[

P e 0
0 0

]

+

[

Ke
uT 0
0 Ke

φD

] [

KTDe
TT KTDe

TD

(KTDe
TD )t −KTDe

DD

]−1 [
[Ke

uT ]t 0

0 [Ke
φD]t

]

.

(3.81)

Once again, individual stiffness sub-matrices are given explicitly in Section 3.7. The inte-
gration schemes used are as given previously, and again the number of stress β-parameters
n, is included in the element designation.

3.6.3 Degenerate assumed flux density piezoelectric element with
drilling DOFs

The degenerate assumed flux density piezoelectric elements with drilling DOFs, emanating
from functions ΠD

M and ΠD
K , denoted P4dMD and P4dKD, respectively are now detailed.

P4dMD element based on ΠD
M

Considering the M-type degenerate element formulation with assumed electric flux density,
the discrete version of the resulting variational equation can be written as

0 =

∫

Ωh
(symm∇δuh)t · cD · (symm∇uh) dV −

∫

Ωh
(δDh)t · h · (symm∇uh) dV

−
∫

Ωh
(symm∇δuh)t · ht · (Dh) dV +

∫

Ωh
(δDh)t · χS · (Dh) dV

+

∫

Ωh
(δDh)t · (∇φh) dV +

∫

Ωh
(∇δφh)t · (Dh) dV

+

∫

Ωh
(skewδT h)t · (skew∇uh −ψh) dV +

∫

Ωh
(skew∇δuh)t · skewT h

− (δψh)t · skewT h dV − γ−1

∫

Ωh
(skewδT h)t · skewT h dV −

∫

Ωh
(δuh)t · f dV.

(3.82)

This equation can once again be rewritten in matrix form using the element operators,
detailed in Section 3.4.4, as









KDe
uu 0 he −Ke

uD

0 0 0 Ke
φD

[he]t 0 −γ−1Ωe 0

−[Ke
uD]t [Ke

φD]t 0 KDe
DD























a

φ

T e
0

βDe
D















=















f

0
0
0















. (3.83)

The expanded matrix form given in (3.83) can be written in terms of only kinematic-like
variables by condensing out all additional terms as
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[

KDe
M

]

{

a

φ

}

=

{

f

0

}

, (3.84)

where the electric flux density β-parameters are

βDe
D = [KDe

DD]−1[(Ke
uD)t − (Ke

φD)t]

{

a

φ

}

, (3.85)

and the condensed stiffness matrix is given by

KDe
M =

[

KDe
uu + γ

Ωe
he[he]t 0

0 0

]

−
[

Ke
uD

−Ke
φD

]

[KDe
DD]−1

[

(Ke
uD)t − (Ke

φD)t
]

. (3.86)

The sub-matrices KDe
uu and Ke

uD are both evaluated using a 5-point integration scheme,
while KDe

DD is computed using a standard 4-point scheme. Expressions for these matrices
are explicitly given in Section 3.7.

P4dKD element based on ΠD
K

The K-type equivalent variational equation with assumed electric flux density can be calcu-
lated as

0 =

∫

Ωh
(symm∇δuh)t · cD · (symm∇uh) dV −

∫

Ωh
(δDh)t · h · (symm∇uh) dV

−
∫

Ωh
(symm∇δuh)t · ht · (Dh) dV +

∫

Ωh
(δDh)t · χS · (Dh) dV

+

∫

Ωh
(δDh)t · (∇φh) dV +

∫

Ωh
(∇δφh)t · (Dh) dV

+ γ

∫

Ωh
(skew∇δuh − δψh)t · (skew∇uh −ψh) dV −

∫

Ωh
(δuh)t · f dV.

(3.87)

The matrix form of (3.87) becomes





KDe
uu + P e 0 −Ke

uD

0 0 Ke
φD

−[Ke
uD]t [Ke

φD]t KDe
DD











a

φ

βDe
D







=







f

0
0







. (3.88)

Again, the matrix form in (3.88) is simplified to include only kinematic variables as

[

KDe
K

]

{

a

φ

}

=

{

f

0

}

, (3.89)
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where the same electric flux density β-parameters as (3.85) result. In this case, the simplified
stiffness matrix is

KDe
K =

[

KDe
uu + P e 0

0 0

]

−
[

Ke
uD

−Ke
φD

]

[KDe
DD]−1

[

(Ke
uD)t − (Ke

φD)t
]

, (3.90)

with individual stiffness matrix terms presented in Section 3.7. The same integration schemes
as used previously are again employed here to evaluate individual sub-matrices.

3.6.4 Degenerate assumed stress piezoelectric elements with drilling
DOFs

Finally, the assumed stress degenerate mixed elements are presented. These elements are
denoted P4dMnT and P4dKnT, and arise from ΠT

M and ΠT
K , respectively. Again, the n

in the element designation denotes the number of stress parameters employed. Of course
‘assumed stress’ refers specifically to the assumed symmetric part of stress since all M-type
elements contain an assumed skew-symmetric stress.

P4dMnT element based on ΠT
M

The assumed stress degenerate Hellinger-Reissner like variational equation in discrete form
is given by

0 = −
∫

Ωh
(symmδT h)t · sE · (symmT h) dV +

∫

Ωh
(∇δφh)t · d · (symmT h) dV

+

∫

Ωh
(symmδT h)t · dt · (∇φh) dV −

∫

Ωh
(∇δφh)t · εT · (∇φh) dV

+

∫

Ωh
(symmδT h)t · (symm∇uh) dV +

∫

Ωh
(symm∇δuh)t · (symmT h) dV

+

∫

Ωh
(skewδT h)t · (skew∇uh −ψh) dV +

∫

Ωh
(skew∇δuh)t · skewT h

− (δψh)t · skewT h dV − γ−1

∫

Ωh
(skewδT h)t · skewT h dV −

∫

Ωh
(δuh)t · f dV.

(3.91)

Yet again, the expression in (3.91) can be rewritten in matrix form as









0 0 he Ke
uT

0 −KTe
φφ 0 Ke

φT

[he]t 0 −γ−1Ωe 0

[Ke
uT ]t [Ke

φT ]t 0 −KTe
TT























a

φ

T e
0

βTe
T















=















f

0
0
0















. (3.92)

The matrix form in (3.92) is again rewritten in simplified form as
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[

KTe
M

]

{

a

φ

}

=

{

f

0

}

, (3.93)

where the stress β-parameters are found to be

βT
M = [KTe

TT ]−1[(Ke
uT )t + (Ke

φT )t]

{

a

φ

}

. (3.94)

Finally, the condensed stiffness matrix is written as

KTe
M =

[

γ
Ωe
he[he]t 0
0 −KTe

φφ

]

+

[

Ke
uT

Ke
φT

]

[KTe
TT ]−1

[

(Ke
uT )t (Ke

φT )t
]

. (3.95)

The submatrices KTe
TT and Ke

φT are evaluated with a 5-point integration scheme, while the

term KTe
φφ employs a 4-point scheme. Expressions for these terms are contained in Section

3.7.

P4dKnT element based on ΠT
K

The last element implementation is based on the assumed stress K-type Hellinger-Reissner
like functional. The first variation of ΠT

K can be expressed in discrete form as

0 = −
∫

Ωh
(symmδT h)t · sE · (symmT h) dV +

∫

Ωh
(∇δφh)t · d · (symmT h) dV

+

∫

Ωh
(symmδT h)t · dt · (∇φh) dV −

∫

Ωh
(∇δφh)t · εT · (∇φh) dV

+

∫

Ωh
(symmδT h)t · (symm∇uh) dV +

∫

Ωh
(symm∇δuh)t · (symmT h) dV

+ γ

∫

Ωh
(skew∇δuh − δψh)t · (skew∇uh −ψh) dV −

∫

Ωh
(δuh)t · f dV.

(3.96)

This expression can once yet again be written in matrix form as





P e 0 Ke
uT

0 −KTe
φφ Ke

φT

[Ke
uT ]t [Ke

φT ]t −KTe
TT











a

φ

βTe
T







=







f

0
0







. (3.97)

The matrix form of (3.97) is finally simplified to

[

KTe
K

]

{

a

φ

}

=

{

f

0

}

, (3.98)

where the condensed stress β-parameters are given by (3.94), and the simplified element
stiffness matrix is given by
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KTe
K =

[

P e 0
0 −KTe

φφ

]

+

[

Ke
uT

Ke
φT

]

[KTe
TT ]−1

[

(Ke
uT )t (Ke

φT )t
]

. (3.99)

The components of the stiffness matrix are yet again presented in Section 3.7.

3.7 Partitioned stiffness matrices

In Section 3.6 expressions for the individual partitioned sub-matrices were omitted. For
the convenience of the reader, it was chosen instead to present all partitioned sub-matrices
together for easier reference. The partitioned stiffness matrices are therefore all given here
in matrix form by:

Ke
uu

(5) =

∫

Ωe
[Be

u Ge
u]

tcE[Be
u Ge

u] dV, (3.100)

Ke
uφ

(5) =

∫

Ωe
[Be

u Ge
u]

tet[Be
φ] dV, (3.101)

Ke
φφ

(4) =

∫

Ωe
[Be

φ]
tεS[Be

φ] dV, (3.102)

he (4) =

∫

Ωe
[be ge]t dV, (3.103)

KDe
uu

(5) =

∫

Ωe
[Be

u Ge
u]

tcD[Be
u Ge

u] dV, (3.104)

Ke
uD

(5) =

∫

Ωe
[Be

u Ge
u]

tht[P e
D] dV, (3.105)

Ke
φD

(4) =

∫

Ωe
[Be

φ]
t[P e

D] dV, (3.106)

KDe
DD

(4) =

∫

Ωe
[P e

D]tχS[P e
D] dV, (3.107)

Ke
φT

(5) =

∫

Ωe
[Be

φ]
td[P e

T ] dV, (3.108)

KTe
φφ

(4) =

∫

Ωe
[Be

φ]
tεT [Be

φ] dV, (3.109)

Ke
uT

(5) =

∫

Ωe
[Be

u Ge
u]

t[P e
T ] dV, (3.110)

KTe
TT

(5) =

∫

Ωe
[P e

T ]tsE[P e
T ] dV, (3.111)

KTDe
TD

(5) =

∫

Ωe
[P e

T ]tgt[P e
D] dV, (3.112)

KTDe
TT

(5) =

∫

Ωe
[P e

T ]tsD[P e
T ] dV, (3.113)

KTDe
DD

(4) =

∫

Ωe
[P e

D]tχT [P e
D] dV, (3.114)
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and finally,

P e (1) = γ

∫

Ωe
[be ge]t[be ge] dV. (3.115)

The superscript in parentheses (·) represents the number of integration points used to perform
the numerical integration over the element area. (The elements are assumed to be homo-
geneous and have constant area profile through the thickness. Analytical through thickness
integration is thus employed.)

3.8 Numerical evaluation

In this section, the developed piezoelectric finite elements are assessed numerically and com-
pared with existing elements. The effect of selected parameters are also quantified. Unlike
in our paper where, for brevity, only the two elements were reported on, in this section the
performance of all eight new elements is evaluated. The elements used in the comparison
are denoted as follows:

Elements without drilling DOFs

Existing elements from literature were implemented, against which our new elements are
benchmarked. These existing elements are denoted as follows:

• P4 – A standard, planar 4 node, quadrilateral piezoelectric element without drilling
DOFs. Only the displacement u and the potential φ interpolated for, see for example
[69].

• P4D – A mixed 4 node element with only electric flux density D assumed additionally
to displacement and electric potential, as proposed in [76]. The same electric flux
density interpolation (with four β-parameters) as in Section 3.5 is employed.

• P4T – A mixed 4 node element with only stress T assumed additionally to displacement
and electric potential, as proposed in [76]. In this case, an interpolation with only five
stress β-parameters is required. The standard stress interpolation of, for instance Di
and Ramm [61] is employed.

• P4TD – A mixed 4 node element with both stress T and electric flux densityD assumed
additionally to displacement and electric potential, as proposed in [65]. An interpo-
lation for electric flux density with four β parameters and five stress β-parameters is
employed.

‘Irreducible’ elements with drilling DOFs:

• P4dM – A 4 node element with drilling DOFs, derived from functional ΠM in (3.29),
and with stiffness matrix given by (3.68).
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• P4dK – A 4 node element with drilling DOFs, derived from functional ΠK in (3.31),
and with stiffness matrix given by (3.72).

‘Degenerate’ Hellinger-Reissner like elements:

• P4dMD – A 4 node assumed electric flux density element with drilling DOFs, derived
from functional ΠD

M in (3.37), and with stiffness matrix given by (3.86).

• P4dKD – A 4 node assumed electric flux density element with drilling DOFs, derived
from functional ΠD

K in (3.39), and with stiffness matrix given by (3.90).

• P4dMnT – A 4 node assumed stress element with drilling DOFs, derived from func-
tional ΠT

M in (3.41), and with stiffness matrix given by (3.95), and number of stress
parameters given by n.

• P4dKnT – A 4 node assumed stress element with drilling DOFs, derived from func-
tional ΠT

K in (3.43), and with stiffness matrix given by (3.99), and number of stress
parameters given by n.

Fully mixed Hellinger-Reissner like elements:

• P4dMnTD – A fully mixed 4 node element, based on functional ΠTD
M given in (3.33),

with stiffness matrix given in (3.77). The number of stress interpolation parameters is
given by n.

• P4dKnTD – A fully mixed 4 node element, based on functional ΠTD
M given in (3.35),

with stiffness matrix given in (3.81). The number of stress interpolation parameters is
given by n.

In the test problems to follow, unless otherwise stated, the material constants of PZT-4
given by Sze et al. [64] are employed so that our piezoelectric elements may be compared to
theirs. To this end, the following material constants are used:

c11 = 139 × 103, c33 = 113 × 103, c13 = 74.3 × 103, c55 = 25.6 × 103 (in N/mm2)

e15 = 13.44 × 106, e31 = −6.98 × 106, e33 = 13.84 × 106 (in pC/mm2)

ε11 = 6.00 × 109, ε33 = 5.47 × 109 (in pC/(GVmm)).

The units of length, force, stress, charge, electric displacement and electric potential, re-
spectively, are taken as mm, N, N/mm2, pC, pC/mm2 and GV. This unusual unit choice
alleviates the ill effects resulting from the poor scaling of the global stiffness matrix. The
poling direction in the test problems to follow, unless otherwise stated, is taken as the global
y–direction. The constitutive equations which result are























Txx

Tyy

Txy

Dx

Dy























=













c11 c13 0 0 −e31

c13 c33 0 0 −e33

0 0 c55 −e15 0
0 0 e15 ε11 0
e31 e33 0 0 ε33



































Sxx

Syy

Sxy

Ex

Ey























. (3.116)
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Figure 3.4: Effect of γ on eigenvalues (normalised with respect to their values at γ/c33 = 1).

Constants used in the analytical solutions of some of the tests to follow, are given by





s11 s13 g31

s13 s33 g33

−g31 −g33 β33



 =





c11 c13 −e31

c13 c33 −e33

e31 e33 ε33





−1

. (3.117)

3.8.1 Effect of γ

The elements developed in the foregoing are dependant on the problem-dependent penalty
parameter γ. The effect of γ has been the focus of a number of recent studies, see Chapter 2
and [43, 58, 81] for examples. For linear elastic isotropic Dirichlet problems, the formulation
is reported to be relatively insensitive to the value of γ [18, 21, 45], and it was proposed
that γ = µ, the shear modulus. Under different conditions, e.g. orthotropy (as in the case
of piezoelectric materials) or dynamic problems, a greater sensitivity to γ is expected. For
dynamic problems, for example, Hughes et al. [82] propose a value of γ = µ/10.

To determine an appropriate value for γ, an eigenvalue analysis of an undistorted (square)
P4dM element is performed. Although results are only reported for the P4dM element,
the trends depicted in Figures 3.4 and 3.5 are typical for all of our new elements. Figure
3.4 depicts the effect of γ on the non-zero eigenvalues, arranged in descending order. The
eigenvalues are normalised with respect to their values at γ = c33. It is clear that the ‘softer’
modes are most sensitive to γ at values of γ/c33 < 1. For values of γ/c33 > 1, on the other
hand, the ‘harder’ modes are significantly more sensitive, in particular λ1 and λ2, indicative
of a locking-like phenomena. This results from the terms in the stiffness matrix containing
γ dominating the response.

In order to determine the effect of γ on the accuracy of the current formulations, a represen-
tative test problem is studied for an array of γ values. The 10 element cantilever, depicted
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Figure 3.6: Ten element piezoelectric cantilever beam subjected to pure bending.

Figure 3.6, is selected for this study. In Figure 3.5 some accuracy measures are plotted as a
function of γ/c33.

Figure 3.5 shows how the accuracy of uyB, the y–displacement at point B and of φC , the
electric potential at C (see Figure 3.6), decrease at values of γ/c33 > 1. Also plotted is an
indication of the error on the skew-symmetric part of stress, T0 as suggested in Chapter 2
and [58]. The plotted values are normalised with respect to principle stresses at points D and
E. T0D and T0E are the constant skew-symmetric part of stress in the elements containing
points D and E, respectively. T2D is the second (compressive) principle stress calculated
at D and T1E is the first principle stress at E. Since the skew-symmetric part of stress
should be zero, both T0D/T2D and T0E/T1E should in turn be zero. Notably, the error on
the skew-symmetric stress increases with larger values of γ/c33. To avoid operating in the
regime where the gradient change of the accuracy measures occurs, it is suggested that a
value of γ/c33 = 10−2 be used.
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Figure 3.7: Mesh for piezoelectric patch test.

3.8.2 Eigenvalue analysis

Since a reduced order integration scheme is employed during stiffness calculations and a
nonstandard γ value is used, element rank sufficiency needs to be verified by means of an
eigenvalue analysis. The eigenvalues of 2 × 2, undistorted (square) elements are computed.
(Eigenvalue analyses should in general be carried out on undistorted elements, since distor-
tion may actually suppress zero energy modes due to the inaccuracies of an approximate
integration scheme.)

In the case of planar piezoelectric elements, the mechanical partition of the stiffness ma-
trix should contain only 3 zero eigenvalues corresponding to the 3 rigid body modes. An
eigenvalue analysis of the dielectric part of the element stiffness matrix should reveal a single
zero eigenvalue, corresponding to the constant potential distribution resulting in zero electric
field. For the sake of brevity, the eigenvalues are not reported here. It was, however verified
that each element possesses the proper number of non-zero eigenvalues.

3.8.3 Patch test

The patch test is a standard method to test for element convergence, as well as any possible
implementation or programming errors. The test is performed with the geometry and mesh
suggested by Sze et al. [64], as shown in Figure 3.7. Kinematic (displacement and potential)
terms on the boundary are prescribed, corresponding to:

ux = s11σ0x, uy = s13σ0y, φ = g31σ0y, (3.118)

with σ0 a stress parameter. The corresponding stress and electric displacement can be shown
to be constant, and are given by

Txx = σ0, Tyy = Txy = Dx = Dy = 0. (3.119)

Compliance with the conditions above was verified for each of the elements used in this
study. A force patch test, with prescribed boundary forces corresponding to (3.119), was
also conducted.
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Figure 3.8: Two element piezoelectric cantilever beam subjected to pure bending.

3.8.4 Two element beam

The two element beam bending test is used to quantify the effect of distortion on element
accuracy. Figure 3.8 depicts a cantilever beam of length L=10 and height h=2, modelled
using two elements with a common distortion e. The electric potential of all nodes at y = −1
is prescribed to be zero. The exact solution for this problem was presented by Sze et al.
[64]. The analytical solutions to this problem include:

ux = −s11σ0xy, uy =
s13σ0

2

(

h2

4
− y2

)

+
s11

2
σ0x

2, φ =
g31σ0

2

(

h2

4
− y2

)

, Tx = −σ0y,

Ty = Txy = Dx = Dy = 0, M =

∫ h/2

−h/2

yTxdy = −h
3σ0

12
= −hF.

Figure 3.9 depicts the relative error of the y–displacement at point A, i.e. uyA/uyExact − 1,
for the various elements being tested. Considering the irreducible elements, the superior
accuracy and stability of the P4dM and P4dK elements over the standard P4 elements is
clear. The displacement accuracy of the assumed flux density elements are similar to that
of the irreducible, and are actually slightly less accurate than the irreducible elements. Al-
though the elements with 8 β-parameters perform slightly better than the elements with
9 β-parameters, the assumed stress elements surprisingly severely overestimate the tip dis-
placements for the non-distorted mesh. The P4TD fully mixed elements without drilling
degrees of freedom achieve an accuracy comparable to the elements developed by Sze et al.
[64]. It is also demonstrated that the P4dM8TD and P4dK8TD elements are accurate and
stable, even at extreme mesh distortions. In fact, for this problem these elements perform
slightly better than the stabilised plane element developed by Sze et al. [64], as shown in
Figure 3.9.

Figure 3.10 depicts the absolute error on the electric potential at point A, φA. In contrast to
the displacement results, the elements without drilling DOFs all achieve a better accuracy
on electric potential than the elements of the same family with drilling DOFs. However,
considering the irreducible elements (which are the least numerically expensive and are the
easiest to implement) the accuracy gained on the displacement is far more significant than
that lost on electric potential. Unfortunately Sze et al. [64] did not report on this quantity,
so comparison with their element was not possible. Having said than, the parabolic ‘through-
thickness’ potential distribution of the exact solution can, of course, not be captured using
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bilinear potential interpolations with the current mesh. The result is that for a regular mesh,
zero electric field is predicted and therefore relatively large errors on displacement accrue
due to the inherent coupling (as is apparent with the assumed stress elements).

This test is therefore repeated with a mesh consisting of two elements along the length (as
before), but this time with two elements through the thickness (four elements in total).
Although the effects of the mesh distortion are more pronounced for the aspect ratio of the
elements in this test, this in our opinion, is a more reasonable mesh for this problem, since
the physics of the problem can be approximated by all elements used in the comparison.
That is to say, the parabolic potential distribution can be approximated using the bilinear
potential interpolations of the aforementioned elements.

The displacement results are depicted in Figure 3.11. A significant improvement is achieved
for the assumed stress degenerate elements, especially at zero distortion. All the elements
with assumed stress (degenerate and full-mixed) perform similarly well. Once again the
superior accuracy of our new irreducible elements with drilling DOFs over the standard P4
elements is noted. Our new elements also perform better than the existing P4D assumed
flux density elements.

Figure 3.12 depicts the absolute error on φA for our four element beam problem. For this
measure, a marked improvement is once again noted for the degenerate assumed stress ele-
ments with drilling DOFs. For this mesh, the standard P4T element only out-performs our
new elements at extreme mesh distortions (e > 2). The electric potential of all fully mixed el-
ements (with and without drilling DOFs) achieve similar accuracy. Although the irreducible
and assumed flux density exhibit a slightly superior accuracy on electric potential when
compared to the assumed stress and fully mixed elements, this slight accuracy improvement
comes at the expense of a significant loss of accuracy on displacement accuracy.

3.8.5 Ten element beam

The same beam geometry as used in the two and four element test (with identical boundary
conditions) is modelled, but this time with ten irregular elements as shown in Figure 3.6.
Displacements and electric potentials are evaluated at points A, B and C and stresses and
electric flux densities are calculated directly at points D and E. This problem was used by
Wu et al. [65] to verify the accuracy of their P4TD element. Results are presented in Table
3.1.

Again, considering the irreducible elements used in this comparison, the the superior accu-
racy with respect most fields of the elements with drilling DOFs relative to P4 is evident.
Our assumed flux density degenerate elements significantly out-perform the standard P4D
elements on almost all measures. The performance of the assumed stress elements with and
without drilling DOFs is similar, as is the performance of the fully mixed elements. In fact,
the performance of the assumed stress family of elements is similar to the family of fully
mixed elements with the notable exception of electric flux density accuracy. The inclusion
of the independent interpolation for electric flux density therefore appears to significantly
improve the accuracy of electrical quantities (potential and electric flux density).
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Figure 3.9: Two element piezoelectric beam subjected to pure bending: Effect of distortion on vA.
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(d) Elements with u, φ, D and T assumed.

Figure 3.10: Two element piezoelectric beam subjected to pure bending: Effect of distortion on φA.
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Figure 3.11: Four element piezoelectric beam subjected to pure bending: Effect of distortion on vA.

 
 
 



www.manaraa.com

3
.8

.
N

U
M

E
R

IC
A

L
E

V
A

L
U

A
T

IO
N

81

A
b
s
o
lu

t
e

φ
A

e
r
r
o
r

1e-08

5e-09

0

-5e-09

-1e-08

-1.5e-08

-2e-08

-2.5e-08

-3e-08

-3.5e-08
0 0.5 1 1.5

Distortion e
2 2.5 3 3.5 4

Exact
P4
P4dK
P4dM

(a) Elements with u and φ assumed.

2e-08

1.5e-08

1e-08

5e-09

0

-5e-09

-1e-08

-1.5e-08

-2e-08

-2.5e-08
0 0.5 1 1.5

Distortion e
2 2.5 3 3.5 4

P4dMD
P4dKD

Exact
P4D

A
b
s
o
lu

t
e

φ
A

e
r
r
o
r

(b) Elements with u, φ and D assumed.

A
b
s
o
lu

t
e

φ
A

e
r
r
o
r

1e-08

5e-09

0

-5e-09

-1e-08

-1.5e-08

-2e-08

-2.5e-08

-3e-08

-3.5e-08
0 0.5 1 1.5

Distortion e
2 2.5 3 3.5 4

P4T
Exact

P4dK8T
P4dM8T
P4dK9T
P4dM9T

(c) Elements with u, φ and T assumed.

1e-08

5e-09

0

-5e-09

-1e-08

-1.5e-08

-2e-08

-2.5e-08

-3e-08

-3.5e-08
0 0.5 1

Distortion e
21.5 2.5 3 3.5 4

Exact
P4TD
P4dK8TD
P4dM8TD
P4dK9TD
P4dM9TD

A
b
s
o
lu

t
e

φ
A

e
r
r
o
r

(d) Elements with u, φ, D and T assumed.

Figure 3.12: Four element piezoelectric beam subjected to pure bending: Effect of distortion on φA.
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Table 3.1: Ten element piezoelectric cantilever subject to pure bending.
Relative Relative Relative Relative Relative Absolute Absolute
% error % error % error % error % error error error
uxB uyB φC TxD TxE DyD DyE

P4 -40.4175 -36.1072 -48.1191 -21.3819 -5.2331 90.1438 -10.0964
P4dM -3.4094 -1.3680 -5.3626 9.2982 18.1271 97.7308 -102.4166
P4dK -3.4102 -1.3691 -5.3643 9.2977 18.1313 97.7287 -102.3594

P4D -50.1581 -44.4320 -68.7544 -28.2890 -14.1054 32.5175 67.5230
P4dMD -8.5244 -6.7333 -6.7703 7.5064 18.6191 -5.0939 7.6408
P4dKD -8.5248 -6.7340 -6.7723 7.5049 18.6171 -5.0934 7.6520

P4T 1.0322 2.9902 7.5749 -7.1865 -6.9662 174.6776 -218.2058
P4dM8T 0.4151 2.2293 7.2564 -5.5496 -2.1303 183.0845 -231.3944
P4dK8T 0.4148 2.2295 7.2527 -5.5553 -2.1301 183.0898 -231.3809
P4dM9T 0.4814 2.2079 7.1959 -10.0337 -2.0298 130.5465 -225.8105
P4dK9T 0.4812 2.2082 7.1938 -10.0357 -2.0308 130.6023 -225.7964

P4TD -5.7885 -4.0462 1.7121 0.7077 0.4331 -6.6586 7.4355
P4dM8TD -6.4972 -4.8806 1.2997 1.9039 7.1635 -4.7693 8.3963
P4dK8TD -6.4976 -4.8809 1.2964 1.8987 7.1609 -4.7642 8.4026
P4dM9TD -6.4364 -4.8969 1.0597 -0.9267 7.1655 -4.3515 8.4282
P4dK9TD -6.4368 -4.8971 1.0582 -0.9300 7.1626 -4.3471 8.4343
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Figure 3.13: Piezoelectric Cook’s membrane.

3.8.6 Cook’s membrane

The final pathological test of element accuracy under mechanical actuation is depicted in
Figure 3.13. The geometry and loading is similar to the popular Cook’s membrane consisting
of a swept and tapered beam with distributed tip load. The lower surface is prescribed to have
a voltage of 0V. Since no analytical solution exists for this problem, the predicted solutions
are compared to a finite element approximation with a sufficiently fine mesh. The best
known values of uyC and φC , computed by performing a detailed finite element analysis with
a refined mesh, are 2.109×10−4mm and 1.732×10−8GV, respectively. Figure 3.14 depicts
the magnitude of the relative error on uyC , the y–displacement of point C, for different
mesh refinements on a log scale. The accuracy of the irreducible and assumed flux density
elements with drilling DOFs compared to their standard P4 and P4D counterparts is once
again illustrated. In this case, the assumed stress elements achieve a far greater accuracy
than the other elements, with the P4T element achieving the best displacement accuracy
of all elements. All of the fully mixed elements with and without drilling DOFs perform
similarly well.

Figure 3.15 depicts the magnitude of the relative error on φC , the electric potential at
point C. The accuracy of electric potential within the four individual element families
is similar, and a far less marked distinction between elements with and without drilling
DOFs is apparent. Invariably upon comparing Figures 3.14 and 3.15, elements with superior
displacement accuracy exhibit poorer potential accuracy and vice versa. Furthermore, the
respective elements’ loss of accuracy on electric potential appears to be less substantial than
the accuracy gained on displacement accuracy.

Table 3.2 presents the relative percentage errors on the first principle stress at point A, T1A

and the magnitude of the electric flux density at B, |DB|. The best known values for T1A

and |DB| are 0.21613 N/mm2 and 22.409 pC/mm2, respectively. In this case, the irreducible
elements with drilling DOFs achieve the best approximations for both T1A and |DB| with
the exception of |DB| for the 2 × 2 discretisation. Again, the accuracy of the elements
with drilling DOFs within the irreducible and assumed flux density families is illustrated.
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Furthermore, as before the assumed stress and fully mixed families achieve similar accuracies
regardless of whether drilling DOFs are included or not. Our new elements with 9 stress
β-parameters appear to perform very well.

Table 3.2: Relative percentage error on stress and electric displacement for Cook’s membrane.
2 × 2 mesh 4 × 4 mesh 8 × 8 mesh

T1A |DB| T1A |DB| T1A |DB|
P4 -44.6706 -80.3136 -19.8108 -68.3021 -3.7775 -33.9002
P4dM -9.2049 -38.4155 -0.7867 -9.7136 -0.7298 -6.7096
P4dK -9.1978 -38.4299 -0.7834 -9.7162 -0.7291 -6.7099

P4D -50.8613 -77.1129 -20.2323 -86.1091 -3.8591 -38.5268
P4dMD -19.7603 -42.8530 -3.7775 -19.5042 -1.2428 -8.9451
P4dKD -19.7569 -42.8726 -3.7756 -19.5085 -1.2423 -8.9457

P4T -21.4767 1.0435 -6.9101 -17.2497 -2.1175 -10.3702
P4dM8T -28.7225 -4.0746 -8.2523 -24.1994 -2.3955 -12.9287
P4dK8T -28.7176 -4.0162 -8.2527 -24.1880 -2.3958 -12.9280
P4dM9T -19.8624 -1.8967 -6.2470 -25.8652 -1.8419 -11.9210
P4dK9T -19.8634 -1.8251 -6.2477 -25.8541 -1.8422 -11.9204

P4TD -20.9579 -45.4065 -6.0842 -23.5878 -1.6060 -10.6112
P4dM8TD -35.3104 -48.9795 -7.3783 -25.3382 -2.1842 -11.6869
P4dK8TD -35.3060 -48.9936 -7.3791 -25.3460 -2.1843 -11.6889
P4dM9TD -18.2960 -47.2924 -4.7375 -25.4509 -1.3131 -11.6292
P4dK9TD -18.2993 -47.3067 -4.7382 -25.4583 -1.3132 -11.6312
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Figure 3.14: Cook’s membrane: y–displacement at C (uyC).
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Figure 3.15: Cook’s membrane: Electric potential at C (φyC).
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Figure 3.16: Bimorph based on MacNeal’s elongated beam.

3.8.7 Piezoelectric bimorph beam

The final problem, evaluating element accuracy under electrical actuation, takes the form
of a piezoelectric bimorph beam. The physical problem consists of two identical layers of
piezoelectric material with opposite polarities, as indicated in Figure 3.16. Upon application
of an electric field in the through-thickness direction, the bimorph bends as a result of
moments caused by the layers’ opposing polarities.

This problem is often solved using PVDF material constants and compared to the solution
of Tzou [83]. For the purpose of the current study, tests are conducted using two different
materials. To assess the element accuracy by beam solution, the Poisson’s ratio is set to
zero. Therefore the material properties for the PVDF material are [84] E1 = E2 = E3=
2×103 (N/mm2), ν12 = ν13 = ν23=0, e31 = e32=-0.046×106 (pC/mm2) and ε11 = ε33 =
ε33=0.1062×109 (pC/GVmm). The e33 coefficient is assumed to be zero [84]. In the second
case, the material properties of PZT-4, as used in the preceding problems, are used and the
solution is compared to a refined finite element solution.

Since at least two elements are required through the thickness, the meshes used here repre-
sents a bisection of the discretisation suggested by MacNeal and Harder [85]. The top surface
of the beam is subjected to 1V, and the bottom surface to -1V. The relative percentage error
on the tip displacement is reported for the two different materials and the three meshes in
Table 3.3. The beam solution for the PVDF material is 6.2100×10−5 mm, while the best
known solution for the PZT-4 material is 4.3622×10−4 mm.

The over-stiff response of the P4 and P4D elements are once again highlighted for both
regular and distorted elements. The significant improvement in performance upon addition
of the drilling DOFs within these two element families is also once again apparent.

The results for both the assumed stress and fully mixed families employing the PVDF mate-
rial are similar. Notably, elements with drilling DOFs and no assumed flux density interpola-
tion predict the exact (beam) solution for the undistorted mesh. Meanwhile the same slight
displacement error results for undistorted assumed flux density and fully mixed elements
with drilling DOFs.
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Table 3.3: Relative percentage error on vertical tip displacement of piezoelectric bimorph.
PVDF PZT-4

Regular Trapezoidal Parallel Regular Trapezoidal Parallel
P4 -75.7576 -85.7547 -88.7211 -63.2273 -80.9720 -87.5199
P4dM 0 -35.4700 -10.4663 -6.3609 -27.7086 1.9377
P4dK 0 -35.4711 -10.4666 -6.3609 -27.7102 1.9372

P4D -75.7722 -85.7599 -88.7247 -78.6452 -86.8639 -91.3582
P4dMD -0.2484 -35.5802 -10.6666 -8.3357 -32.5815 -7.8569
P4dKD -0.2484 -35.5813 -10.6669 -8.3357 -32.5825 -7.8572

P4T 0 -29.2346 -4.2227 7.0048 -19.7686 4.1441
P4dM8T 0 -33.8712 -5.0015 6.6919 -22.8712 3.8611
P4dK8T 0 -33.8721 -5.0020 6.6919 -22.8717 3.8604
P4dM9T 0 -33.8995 -5.0448 6.3358 -23.3704 3.5463
P4dK9T 0 -33.9004 -5.0453 6.3358 -23.3711 3.5457

P4TD -0.2484 -29.3670 -4.4527 -2.6514 -26.4455 -5.2251
P4dM8TD -0.2484 -33.9872 -5.2288 -2.9145 -29.0260 -5.5317
P4dK8TD -0.2484 -33.9881 -5.2292 -2.9145 -29.0263 -5.5321
P4dM9TD -0.2484 -34.0154 -5.2717 -3.2111 -29.4803 -5.8180
P4dK9TD -0.2484 -34.0163 -5.2722 -3.2111 -29.4807 -5.8184
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For this problem, the assumed stress elements perform slightly better than the fully mixed
elements for the PZT-4 material and distorted meshes, with our assumed stress elements with
drilling DOFs performing marginally better than the standard P4T element. The excellent
performance of the irreducible elements for the PZT-4 bimorph is also noted.

3.9 Conclusions

A number of variational formulations accounting for piezoelectricity and in-plane rotations
have been presented. Two new families of functionals, namely M-type, which retains the
skew-symmetric part of the stress tensor, and K-Type, in which the skew part of stress is
eliminated, are introduced.

From the M-Type Hu-Washizu-like functional an irreducible formulation with only ‘kine-
matic’ independent variables, i.e. displacement and electric potential, was developed. It
has also been shown how a ‘fully’ mixed formulation, with stress and electric flux density
assumed, can be generated. Two M-Type ‘degenerate’ Hellinger-Reissner-like functionals
with either stress or electric flux density assumed, are also given. It was also demonstrated
how the K-Type counterparts of our M-type functionals can be constructed.

Furthermore, numerical implementations of the M- and K-Type formulations are presented.
The accuracy and robustness of our elements on a number of benchmark problems was
demonstrated. The addition of drilling degrees of freedom enriches the interpolated displace-
ment field, resulting in improved element performance. This is borne out by the improved
accuracy and robustness of the P4dM and P4dK elements over the standard P4 piezoelectric
element. The improved performance of our mixed elements with drilling degrees of freedom
is generally less marked when compared to existing mixed piezoelectric elements. In fact,
it is difficult to conclusively state that any one of the elements used in this study is better
in terms of accuracy than all the others. This is so since none of the elements herein con-
sistently outperforms all the other elements on all reported accuracy measures. Our ‘fully
mixed’ elements, however, are shown to be accurate and stable, even at extreme element
distortions. They also allow for improved modelling capabilities due to the additional ro-
tational degree of freedom, e.g. compatibility with elastic elements with drilling degrees of
freedom is ensured. The results presented herein, therefore indicate that the P4dMnTD and
P4dKnTD elements are useful for modelling engineering applications.

What is more, the variational formulations constructed in this work can be used to establish
three dimensional solid piezoelectric elements with drilling degrees of freedom. Furthermore,
the planar elements derived here, when combined with piezoelectric plate elements, can be
used to calculate through-thickness phenomena in thick piezoelectric shell elements.
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Chapter 4

Modified reduced order quadratures
for quadratic membrane elements

4.1 Summary

Reduced integration is frequently used in evaluating the element stiffness matrix of quadrati-
cally interpolated finite elements. Typical examples are the serendipity (Q8) and Lagrangian
(Q9) membrane finite elements, for which a reduced 2×2 Gauss-Legendre integration rule is
frequently used, as opposed to full 3× 3 Gauss-Legendre integration. This ‘softens’ these el-
ement, thereby increasing accuracy, albeit at the introduction of spurious zero energy modes
on the element level. This is in general not considered problematic for the ”hourglass” mode
common to Q8 and Q9 elements, since this spurious mode is non-communicable. The remain-
ing two zero energy modes occurring in the Q9 element are indeed communicable. However,
in topology optimization for instance, conditions may arise where the spurious mode associ-
ated with the Q8 element becomes activated. To effectively suppress these modes altogether
in elements employing quadratic interpolation fields, two modified quadratures are employed
herein. For the Q8 and Q9 membrane elements, the respective rules are a five and an eight
point rule. As compared to fully integrated elements, the new rules enhance element accuracy
due to the introduction of soft, higher-order deformation modes. A number of standard test
problems reveal that element accuracy remains comparable to that of the under-integrated
counterparts.

4.2 Introduction

In the earlier days of the development of the finite element method, numerical integration
schemes attracted significant attention (e.g. see [54, 86, 87, 88]), possibly due to the limita-
tions of the computing devices available at the time.

More recently, reduced integration schemes have frequently been used in combination with
stabilization methods and explicit integration in the time domain, so as to increase com-
putational efficiency when simulating computationally demanding models, e.g. nonlinear

91
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crash analysis, metal forming, etc. The contributions of Belytschko and others (e.g. see
[89, 90, 91, 92, 93]) are notable here. In essence they employ reduced integration schemes
in conjunction with stabilization methods to prevent spurious modes that arise as a result
of these schemes. On this subject the paper of Hughes et al. [94] is informative.

While the need for reduced integration is obvious in explicitly integrated, computationally
demanding analyses, reduced integration is also frequently employed in implicitly integrated
elastostatic or -dynamic analyses. This is normally done to alleviate locking in membrane,
plate or shell elements, or merely to improve the behavior or these elements. Typical exam-
ples are the serendipity and Lagrangian membrane elements, which are over-stiff when full
integration is used.

In the finite element method the equilibrium equations involve integration over the element
volume. This is also true for the expressions for consistent nodal loads, mass matrices,
penalty matrices, etc. For simple elements the integrand may be formed explicitly, resulting
in exact integration. However, numerical integration schemes are necessary when element
geometries are distorted, of which the Gaussian rules are possibly the best known and most
frequently employed. The effects of numerical integration schemes are summarized in a clear
manner by Cook et al. [17]:

For numerically integrated elements, full integration indicates a quadrature rule sufficient
to provide the exact integrals of all terms in the element stiffness matrix Ke if the element
geometry is undistorted. The same ‘full integration’ rule will not exactly integrate K e if the
element is distorted, or if the center nodes are offset from the element midpoints, since the
Jacobian J is no longer constant throughout the element domain.

In this work, reduced order integration refers an integration scheme of lower order (fewer
points and lower order of accuracy) than the lowest order rule which results in the exact
integration of elemental matrices for an undistorted element.

A lower-order quadrature rule, called reduced integration, may be desirable for two reasons.
Firstly, since the expense of generating the matrix Ke by numerical integration is propor-
tional to the number of sampling points, fewer points results in lower computational cost.
Secondly, a low order rule tends to soften an element, thus countering the overly-stiff be-
havior associated with assumed displacement fields. (The displacement based finite element
method is monotonically convergent from below.) Softening comes about because certain
higher-order polynomial terms happen to vanish at Gauss points of a low-order rule. Simply
stated, with fewer sampling points, some of the more complicated displacement modes offer
less resistance to deformation.

We pertinently differentiate between (a) the accuracy of an integration scheme, and (b) the
numerical accuracy of finite elements. The former indicates the error of an approximate
integration scheme as compared to the exact integral, while the latter indicates the perfor-
mance of finite elements employing these approximate numerical schemes. It is reiterated
that the numerical accuracy or performance of finite elements frequently increases when the
accuracy of the integration scheme itself decreases. This is due to the fact that some lim-
iting behavior (e.g. locking) is rendered negligible, or almost so, when reduced as opposed
to full integration is employed. While accuracy of integration of Ke decreases with reduced
integration, the element accuracy may actually increase.
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Figure 4.1: Typical spurious mode of Q8 employing a 4 point Gauss-Legendre scheme.

In summary, reduced integration may be able to simultaneously reduce cost, reduce accuracy
in the evaluation of integration expressions, and increase the accuracy of the finite element
analysis. Barring extremely expensive analyses, it is however noted that most authors agree
that reduced integration should in general not be used if reduced cost is the sole motivation.

Numerical testing of any proposed rule is mandatory. Even though solution accuracy may
be mesh dependent and problem dependent, one quadrature rule is usually superior to oth-
ers. For bilinear (Q4) and eight-node plane elements (Q8), and for eight node linear solid
elements, an order 2 Gauss rule is favored over an order 3 rule (four and eight points for
plane and solid elements, respectively).

For Q4, the order 2 Gauss rule is problem free (at least as far as spurious modes are con-
cerned). For Q8, the order 2 Gauss rule introduces a spurious mode on the element level.
For Q9 (the Lagrangian ‘bubble’ counterpart of Q8), the order 2 Gauss rule introduces 3
spurious modes on the element level. The ”hourglass” spurious mode common to the Q8
and Q9 elements, depicted in Figure 4.1, is in general not considered problematic since it is
non-communicable, viz. the spurious mode is unable to propagate in a mesh consisting of
more than one element. However, in some practical situations, conditions may arise where
this spurious mode becomes activated. One example is the SIMP (Solid Isotropic Material
with Penalization) material description, frequently used in topology optimization (e.g. see
[4]), where the elasticity tensor in adjacent elements may vary considerably. The remaining
two zero energy modes associated with the Q9 element are, however, communicable.

For illustrative purposes the general expression for the stiffness matrix K e of a single three-
dimensional finite element is considered, and can be written as (e.g. see [60])

Ke =

∫

Ω

BTCB dΩ, (4.1)

where B is the strain-displacement operator, C the matrix that defines the constitutive
relationship, and Ω the element volume. Also, dΩ = dx dy dz in the Cartesian coordinate
system, which is transformed to the natural coordinate system as dΩ = dr ds dt |J |, with |J |
the determinant of the Jacobian matrix J of the transformation. In the natural coordinate
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system,

Ke =

∫ 1

−1

∫ 1

−1

∫ 1

−1

BTCB |J | dr ds dt. (4.2)

During numerical integration, (4.2) is written as

Ke =
N
∑

n=1

WnB
T (rn, sn, tn)CB(rn, sn, tn) |J(rn, sn, tn)|, (4.3)

where (rn, sn, tn) is the nth position of the integration point, associated with weight Wn, of
any suitable integration scheme using N integration points. In (4.3) it is assumed that the
constitutive relation defined by C is not a function of the global coordinates (x, y, z). It
is desirable that (4.3) is problem free in terms of locking, (element) accuracy and spurious
modes.

For 2-D planar elements the through-thickness component is usually constant, (4.3) therefore
reduces to

Ke = h

N
∑

n=1

WnB
T (rn, sn)CB(rn, sn) |J(rn, sn)|, (4.4)

where h represents the constant element thickness and where the Jacobian, J , is of reduced
size compared to (4.3).

In this study it is attempted to effectively suppress spurious modes in quadratic finite ele-
ments altogether, using two modified quadratures proposed by Dovey [54].

This chapter is laid out as follows: Firstly, a summary of the formulation presented by
Dovey is presented since his work on reduced order integration is probably not widely known.
Numerical experiments are then performed for several well known test problems using the
modified quadrature rules, as well as the standard order 2 and order 3 Gauss-Legendre rules.
Finally, conclusions are drawn, based on the results of our numerical experiments.

For the sake of brevity, we restrict ourselves to the 2-D problem. However, the development
for quadratically interpolated 3-D brick elements is similar. In 2-D, the standard order 2
and order 3 Gauss-Legendre rules will be referred to as the 4 and 9 point Gauss-Legendre
rules.

4.3 Derivation of numerical integration schemes

In this section the work of Dovey [54] is closely followed. The same notation is used. Consider
the area integral given by

I =

∫ 1

−1

∫ 1

−1

F (r, s) dr ds, (4.5)

where F (r, s) is any polynomial function of r and s. Any polynomial expression of two
variables can be expressed in the form

F (r, s) =
∑

i,j

Aijr
isj. (4.6)
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No limits are placed on the summation indices i and j as any arbitrary polynomial is being
considered.

Let any N -point rule be written as

I∗ =
N
∑

n=1

WnF (rn, sn) , (4.7)

where I∗ represents the numerical approximation to I. Integration point n is given by (rn, sn)
and the associated weight is given as Wn.

Each term of (4.6) may be trivially integrated as follows:

∫ 1

−1

∫ 1

−1

Aijr
isj drds =

{

22Aij
(i+1)(j+1)

i, j both even,

0 otherwise.
(4.8)

Application of the quadrature rule of (4.7) to the function F (r, s) in the form of (4.6) gives
the following result, which is expressed in terms of the coefficients Aij as

I∗ = A00

N
∑

n=1

(Wn) + A10

N
∑

n=1

(Wnrn) + A01

N
∑

n=1

(Wnsn) + A20

N
∑

n=1

(

Wnr
2
n

)

+ · · · (4.9)

Two points are to be noted:

• Symmetry of the rule in each coordinate implies that the coefficients corresponding to
all odd powers will vanish in (4.9). This of course corresponds to the vanishing of the
integral of odd powers over this region.

• Symmetry with respect to both coordinates is required to ensure invariance of the rule.

Equating the coefficients of Aij between (4.8) and (4.9) gives a series of equations in the
weights Wn and the coordinates rn and sn. Evidently the number of equations that are
satisfied for a particular set of weights and coordinates indicate which polynomial terms are
integrated exactly by that particular rule. Also, the degree to which each remaining equation
is not satisfied gives the error in that polynomial term. Each equation has the form

N
∑

n=1

Wnr
i
ns

j
n =

22

(i+ 1)(j + 1)
, (4.10)

for the coefficient Aij. Clearly all equations containing odd values for either i or j are satisfied
identically for symmetric rules.

The maximum number of equations needed from (4.10) is determined by the order of the
function F (r, s) which is to be integrated. If the maximum number of equations possible
is satisfied for a particular configuration, then an optimal scheme for that configuration is
obtained. However, if less than the maximum number are satisfied, a less accurate rule
is obtained, but freedom is available for arbitrary selection of some values of weights or
coordinates. The foregoing was used by Dovey to derive a symmetrical 5 and 8 point rule,
as is briefly presented in the following.
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α

Figure 4.2: 5 Point integration scheme.

4.3.1 A five point rule

The 5-point rule is depicted in Figure 4.2. Due to symmetry, the weights Wα are identical.
The rule is indicated by

I∗ = W0F (0, 0) +WαF (±α,±α). (4.11)

The second term of (4.11) indicates four points when all combinations of positive and negative
signs are taken.

Employing (4.10) the first four equations are obtained for the appropriate terms Aij as

A00 : W0 + 4Wα = 4,
A20, A02 : 4Wαα

2 = 4/3,
A22 : 4Wαα

4 = 4/9,
A40, A04 : 4Wαα

4 = 4/5.

(4.12)

The last two of these equations are directly inconsistent and so the last is discarded. Also,
however, the first three are inconsistent if the center point is retained.

Solving the first three expressions of (4.12) leads to

α = 1/
√

3; Wα = 1 and W0 = 0, (4.13)

which is the 2 × 2 Gaussian product rule. The leading error term is defined by the last of
equations (4.12) and gives the error (I∗ − I), corresponding to the fourth power terms, r4

and s4, as
E40 = (4Wαα

4 − 4/5)A40, E04 = (4Wαα
4 − 4/5)A04. (4.14)

However, the center point may be retained by selecting a value for W0, computing Wα and α
from the first two relationships in (4.12). This implies an error in the A22 term. The scheme
is now defined by

Wα = 1 −W0/4, (4.15)

α =

(

1

3Wα

)
1
2

. (4.16)
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α

β

Figure 4.3: 8 Point integration scheme.

The scheme only has physical meaning while 0 ≤ W0 < 4. The error in the A22 term is
minimized as W0 → 0. In practice this implies that the 5-point scheme converges to the
2×2 Gaussian scheme as W0 → 0. This rule was previously used by Groenwold and Stander
for their 4-node thick shell finite element with 6 d.o.f. per node [52].

It is noted that as W0 → 4, Wα → 0 and from (4.16), α → ∞. Even though, for a
polynomial being integrated between -1 and 1, function evaluations outside of this region
may be permitted, it is preferable that for applications in the finite element method this
situation be avoided. The value of α is therefore limited to the defined region 0 ≤ α ≤ 1.
This implies from (4.15) and (4.16) that W0 be chosen such that 0 ≤ W0 ≤ 8

3
.

4.3.2 An eight point rule

The 8-point rule is depicted in Figure 4.3. This rule was previously employed for membrane
elements with in-plane rotational degrees of freedom by Stander and Wilson [95] in the
QC9(8) element, and also by Ibrahimbegovic et al. [21] in their drilling degree of freedom
membrane element. The rule is described by

I∗ = WαF (±α,±α) +Wβ [F (±β, 0) + F (0,±β)] . (4.17)

Due to symmetry, the weights Wα are identical, as are the weights Wβ. The governing
equations are given by

A00 : 4Wα + 4Wβ = 4,
A20, A02 : 4Wαα

2 + 2Wββ
2 = 4/3,

A22 : 4Wαα
4 = 4/9,

A40, A04 : 4Wαα
4 + 2Wββ

4 = 4/5.

(4.18)

All four equations may be satisfied and the solution is

α =
√

7/9; Wα = 9/49; β =
√

7/15; Wβ = 40/49. (4.19)
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This rule gives comparable accuracy to the 3×3 Gaussian rule. However unlike the 3×3
Gauss rule, this 8-point rule possesses leading error terms are given by:

E42 = (4Wαα
6 − 4/15)A42, E24 = (4Wαα

6 − 4/15)A24, and (4.20)

E44 = (4Wαα
8 − 4/25)A44. (4.21)

A scheme of lower accuracy, neglecting the last term of (4.18), is defined by

Wα = 1 −Wβ, (4.22)

α = (
1

9Wα

)
1
4 , (4.23)

β =

(

2/3 − 2Wαα
2

Wβ

)
1
2

. (4.24)

In this case both α and β are restricted to be between 0 and 1. This implies that Wβ be
chosen such that 0 < Wβ <

8
9
.

4.4 Numerical evaluation

For the purpose of determining accuracy, approximate area integration schemes should be
evaluated numerically [54]. Without numerical evaluation the effect of reduced integration
on for instance locking, higher order deformation modes, etc., cannot be determined.

Moreover, such evaluations should include an investigation into element eigenvalues to deter-
mine element rank. In general, it is of the utmost importance to prevent any spurious modes
or rank deficiencies [96], which could lead to unstable mechanisms on the structural level.
Even if no mechanisms appear in an assembled structure, element rank deficiency should
always be accepted cautiously. The basis for this reasoning is that no extent of numerical
testing can fully characterize an element with inherent mechanisms, and no guarantee for
well-defined behavior under all conditions can be given. (Again, computationally demanding
models may be considered an exception. However, one does of course not expect elements
with quadratic interpolations in these models.)

The derived modified quadratures, as well as the standard 4 and 9 point quadrature rules,
are now applied to various test problems in order to obtain estimates for appropriate values
of the weights W0 and Wβ.

4.4.1 Eigenvalue analysis

The results of an eigenvalue analysis of a single (square) Q8 element are tabulated in Table
4.1. (Eigenvalue analyses should in general be done for regular, undistorted elements, since
distortion may actually suppress zero energy modes due to the inaccuracies of an approximate
integration scheme.) In Table 4.1, the 9 point scheme represents full and exact integration.
As is well known, the 4 point scheme introduces a superfluous zero energy mode or mechanism
(λ13 ≈ 0). The mode associated with λ13 is depicted in Figure 4.1. With the 5 and 8 point
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4 pt. scheme 5 pt. scheme 5 pt. scheme 8 pt. scheme 8 pt. scheme 9 pt. scheme
λi − W0 = 0.01 W0 = 0.1(8/3) Wβ = 0.01 Wβ = 0.1(8/9) −
1 4.82388e+00 4.82388e+00 4.82388e+00 4.82388e+00 4.82388e+00 4.82388e+00
2 4.82388e+00 4.82388e+00 4.82388e+00 4.82388e+00 4.82388e+00 4.82388e+00
3 2.31873e+00 2.32416e+00 2.47404e+00 2.31933e+00 2.32434e+00 2.41527e+00
4 2.00000e+00 2.00251e+00 2.07309e+00 2.00126e+00 2.01168e+00 2.21240e+00
5 1.37447e+00 1.37447e+00 1.37447e+00 1.37447e+00 1.37447e+00 1.37447e+00
6 1.37447e+00 1.37447e+00 1.37447e+00 1.37447e+00 1.37447e+00 1.37447e+00
7 1.00000e+00 1.00251e+00 1.07143e+00 1.00063e+00 1.00582e+00 1.10000e+00
8 7.50000e-01 7.50209e-01 7.56048e-01 7.50629e-01 7.55908e-01 8.79436e-01
9 5.00000e-01 5.01251e-01 5.34055e-01 5.00628e-01 5.05772e-01 5.87596e-01

10 4.31271e-01 4.31475e-01 4.36678e-01 4.31294e-01 4.31482e-01 4.34735e-01
11 3.01646e-01 3.01646e-01 3.01646e-01 3.01646e-01 3.01646e-01 3.01646e-01
12 3.01646e-01 3.01646e-01 3.01646e-01 3.01646e-01 3.01646e-01 3.01646e-01
13 < 1.0e-15 4.17595e-04 1.18095e-02 1.25524e-03 1.15433e-02 1.70564e-01
14 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15
15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15
16 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15

Table 4.1: Eigenvalues of a square Q8 serendipity element for different integration schemes
(plane stress, |J | = 1, E = 1, ν = 1/3).

schemes, the mechanism is replaced by a ‘soft’ higher order deformation mode, as borne out
by the low value for λ13. Hence a low strain energy is associated with this particular mode.

Figure 4.4 depicts the effect of the weights W0 and Wβ on the value of λ13, for respectively
the 5 and 8 point schemes. If the soft higher order mode is desired, a low value of weight
should be used, typically in the region of 10% of the maximum weight for both W0 and Wβ,
viz. W0 = 0.1(8/3) and Wβ = 0.1(8/9). Furthermore, if Wβ is chosen in the region of 40/49
for the 8 point scheme, similar values to the 9 point scheme are obtained.

For the Q9 element, a similar analysis is carried out with results tabulated in Table 4.2.
As is well known, e.g. see [17], reduced integration of this element with an order 2 Gauss
rule induces 3 zero energy modes (λ13,14,15 ≈ 0). For this element the 5 point scheme only
eliminates one of the spurious modes, and the resulting element remains rank deficient by 2.

Figure 4.5 depicts the effect of integration rule weight on λ15 for both the 5 and 8 point
schemes. For the 5 point scheme, W0 has no effect on λ15 as illustrated in Figure 4.5, or on
λ14 (not shown). For λ13, however, the weight of the 5 point rule has an effect similar to
that experienced by the Q8 element.

4.4.2 Effect of element aspect ratio

For both Q8 and Q9, the effect of element aspect ratio on the λ13 is now studied. For this
test, a single rectangular element of unit height, with variable length, and constant material
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4 pt. scheme 5 pt. scheme 8 pt. scheme 8 pt. scheme 8 pt. scheme 9 pt. scheme
λi − W0 = 0.1(8/3) Wβ = 0.01 Wβ = 0.1(8/9) Wβ = 40/49 −
1 4.82388e+00 4.81443e+00 4.82783e+00 4.86165e+00 6.25205e+00 5.58912e+00
2 4.82388e+00 4.81443e+00 4.82783e+00 4.86165e+00 6.25205e+00 5.58912e+00
3 2.31873e+00 2.32416e+00 2.31933e+00 2.32434e+00 2.41527e+00 2.41527e+00
4 2.00000e+00 2.00251e+00 2.00126e+00 2.01168e+00 2.21240e+00 2.21240e+00
5 1.37447e+00 1.37396e+00 1.37522e+00 1.38171e+00 1.75566e+00 1.56065e+00
6 1.37447e+00 1.37396e+00 1.37522e+00 1.38171e+00 1.75566e+00 1.56065e+00
7 1.00000e+00 1.00251e+00 1.00063e+00 1.00582e+00 1.10000e+00 1.10000e+00
8 7.50000e-01 7.50209e-01 7.50629e-01 7.55908e-01 8.84191e-01 8.79436e-01
9 5.00000e-01 5.01251e-01 5.00628e-01 5.05772e-01 8.84191e-01 6.80792e-01

10 4.31271e-01 4.31475e-01 4.31294e-01 4.31482e-01 8.79436e-01 6.80792e-01
11 3.01646e-01 3.01593e-01 3.02001e-01 3.05498e-01 5.87596e-01 5.87596e-01
12 3.01646e-01 3.01593e-01 3.02001e-01 3.05498e-01 4.34735e-01 4.34735e-01
13 < 1.0e-15 4.17595e-04 5.02504e-03 4.64348e-02 2.74764e-01 2.69437e-01
14 < 1.0e-15 < 1.0e-15 5.02504e-03 4.64348e-02 2.74764e-01 2.69437e-01
15 < 1.0e-15 < 1.0e-15 1.25524e-03 1.15433e-02 1.70564e-01 1.70564e-01
16 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15
17 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15
18 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15 < 1.0e-15

Table 4.2: Eigenvalues of a square Q9 Lagrange element for different integration schemes
(plane stress, |J | = 1, E = 1, ν = 1/3).
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Figure 4.4: λ13 of Q8 with different integration schemes (plane stress, |J | = 1, E = 1,
ν = 1/3).

properties E = 1 and ν = 1/3 is used. Results are depicted in Figures 4.6 and 4.7 for Q8
and Q9 respectively.

For Q8, λ13 obtained with all of the 5 and 8 point rules converge to the eigenvalue obtained
using full 3 × 3 Gauss-Legendre integration. (While this value decreases as the aspect ratio
increases, it never reaches zero.) For Q9, similar results are obtained, although the results
reiterate that Q9 is to be integrated using the 8 point scheme. For this element, the results
for λ14 and λ15 are similar (not shown).

The foregoing illustrates that, for both Q8 and Q9, the modified integration schemes do not
induce mechanisms as element aspect ratio is increased.

4.4.3 Cantilever beam in pure bending

Figure 4.8 depicts a cantilever beam modeled using two elements with a common distortion
d. The vertical displacements vA and vB, and horizontal displacement uB are reported for the
Q8 and Q9 elements, using different integration schemes. The results are tabulated in Table
4.3. Since the Q9 element stiffness matrix becomes singular when 4 and 5 point schemes are
used, these results are not reported. For d = 0, both elements predict the exact solutions
for displacements. In addition, the Q9 element is completely insensitive to distortion using
both the 8 and 9 point schemes and predicts the exact solution in all cases. Even for the
extreme case of d = 5, the exact solution is recovered.

For the Q8 element, Figure 4.9 depicts the effect of distortion on the vertical displacement
vB for the various integration schemes. With the 4 and 5 point schemes (the latter with
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d Element Scheme Weight vA uB vB

1.0 Q8 4 − 7.50000 1.50000 7.51000
5 0.01 7.50000 1.50000 7.51002

0.1(8/3) 7.50000 1.50000 7.51045
8 0.01 7.49961 1.49992 7.50958

0.1(8/9) 7.49648 1.49929 7.50621
40/49 7.41490 1.48277 7.42211

9 − 7.44849 1.48962 7.45721
Q9 8 0.01 7.50000 1.50000 7.52250

0.1(8/9) 7.50000 1.50000 7.52250
40/49 7.50000 1.50000 7.52250

9 − 7.50000 1.50000 7.52250

2.0 Q8 4 − 7.50000 1.50000 7.47250
5 0.01 7.50000 1.50000 7.47256

0.1(8/3) 7.50000 1.50000 7.47429
8 0.01 7.49187 1.49849 7.46381

0.1(8/9) 7.43244 1.48708 7.40160
40/49 6.27595 1.25407 6.23790

9 − 6.66839 1.33307 6.63637
Q9 8 0.01 7.50000 1.50000 7.52250

0.1(8/9) 7.50000 1.50000 7.52250
40/49 7.50000 1.50000 7.52250

9 − 7.50000 1.50000 7.52250
Exact 7.50000 1.50000 7.52250

Table 4.3: Displacement results for distorted cantilever beam.
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Figure 4.5: λ15 of Q9 element for different integration schemes (plane stress, |J | = 1, E = 1,
ν = 1/3).

low value of W0), this element is notably less sensitive to the severity of the distortion as
compared to the 8 and 9 point schemes. Again, W0 = 0.1(8/3) and Wβ = 0.1(8/9) seem
suitable.

4.4.4 A near mechanism

Again, Cook at al. [17] are cited: A structure that appears to be adequately constrained
may have an instability that makes the assembled structural stiffness matrix K singular, or
near-singular. Or, unstable elements may combine to form a structure that is stable, but
unduly susceptible to certain load patterns, so that computed displacements are excessive.
Again, this situation may occur in topology optimization problems.

The situation is depicted in Figure 4.10. A 2× 2 Gauss rule is used to integrate K e in each
element. The stiff element, shown shaded, is weakly restrained by soft elements connected
to the fixed boundary allowing a singular mode to become pronounced.

Figure 4.11 depicts the incremental displacement v̂ at point A, as illustrated in Figure
4.10. The 5 and 8 point schemes yield comparable results (their respective curves are not
distinguishable on the scale of the figure. Again, suitable weights are roughly 10% of the
maximum permissible weights (viz. 0.1(8/3) for the 5 point rule and 0.1(8/9) for the 8 point
rule).
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Figure 4.6: Effect of aspect ratio on λ13 of Q8 for different integration schemes.

4.4.5 Highly constrained square plate

In this test, a highly constrained mesh is used to demonstrate that spurious modes are not
confined to meshes with few constraints, as illustrated by Bićanić and Hinton [97]. A square
6× 6 mesh is completely constrained on the boundary, and an eigenvalue analysis is carried
out on the global stiffness matrix. In Figures 4.12, 4.13 and 4.14 the lowest six eigenvectors
are depicted together with the corresponding eigenvalue, for the 4, 8 (Wβ = 0.1(8/9)) and 9
point schemes, respectively.

Modes 5 and 6 of the 4 point scheme in Figure 4.12 are spurious and are due to instabilities
caused by the reduced integration scheme. (These modes are also known as Escher modes.)
In Figure 4.13, it is shown that these spurious modes are not present when a 9 point inte-
gration scheme is used. What is more, it is shown that if the 8 point scheme is used with
Wβ = 0.1(8/9), the spurious modes are eliminated, as demonstrated in Figure 4.14.

4.4.6 Cook’s membrane

This popular test problem has been used by many authors and is depicted in Figure 4.15.
The center displacement vC for the various integration schemes is tabulated in Table 4.4,
while stresses (σmin)B and (σmax)A are presented in Table 4.5.

The displacement results reveal the over-stiff behavior of the Q8 element with a 9 point rule
and an 8 point scheme with Wβ = 40/49. All other integration schemes predict displacement
values close to the best known solution. Although the four point scheme is the most accurate,
this high accuracy of course comes at the expense of a mechanism. Figure 4.16 depicts the
effect of different values of weight on the center displacement vC for a single Q8 element.
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Element Scheme Weight 1 × 1 2 × 2 4 × 4
Q8 4 - 20.00 23.17 23.73

5 0.01 19.98 23.17 23.73
0.1(8

3
) 19.52 23.09 23.72

8 0.01 19.95 23.17 23.73
0.1(8

9
) 19.58 23.14 23.73

40/49 17.16 22.71 23.71
9 - 17.22 22.72 23.71

Q9 4 - 26.97 24.15 24.00
5 0.01 26.97 24.15 24.00

0.1(8
3
) 26.75 24.11 23.99

8 0.01 26.74 24.10 23.97
0.1(8

9
) 25.25 23.91 23.94

40/49 19.09 23.20 23.82
9 - 19.64 23.29 23.84

Best known 23.95

Table 4.4: Cook’s membrane: Center displacement vC .

1 × 1 2 × 2 4 × 4
Element Scheme Weight (σmax)A (σmin)B (σmax)A (σmin)B (σmax)A (σmin)B

Q8 4 - 0.12530 -0.26746 0.26210 -0.23356 0.24439 -0.20198
5 0.01 0.12536 -0.26700 0.26198 -0.23354 0.24438 -0.20196

0.1(8
3
) 0.12678 -0.25577 0.25881 -0.23313 0.24408 -0.20156

8 0.01 0.12553 -0.26589 0.26197 -0.23351 0.24439 -0.20196
0.1(8

9
) 0.12726 -0.25437 0.26090 -0.23312 0.24425 -0.20182

40/49 0.13451 -0.18594 0.24722 -0.22750 0.24212 -0.20075
9 - 0.13446 -0.18623 0.24727 -0.22741 0.24212 -0.20075

Q9 4 - 0.18776 -0.15703 0.27176 -0.33457 0.24523 -0.33042
5 0.01 0.18745 -0.15732 0.27178 -0.33436 0.24532 -0.33029

0.1(8
3
) 0.17950 -0.16401 0.27184 -0.32621 0.24675 -0.32073

8 0.01 0.18476 -0.15786 0.26984 -0.30335 0.24484 -0.26768
0.1(8

9
) 0.16806 -0.16181 0.26437 -0.22257 0.24657 -0.21771

40/49 0.13613 -0.16055 0.25023 -0.21037 0.24374 -0.20539
9 - 0.13736 -0.15334 0.25015 -0.20845 0.24362 -0.20633

Best known 0.2360 -0.2010 0.2360 -0.2010 0.2360 -0.2010

Table 4.5: Cook’s membrane: Stress analysis.
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Figure 4.7: Effect of aspect ratio on λ13 of Q9 for different integration schemes.
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Figure 4.8: Distorted cantilever beam.

In contrast to the Q8 element, for the Q9 element the lower order integration schemes over-
estimate the displacement, while the 9 and 8 point schemes with Wβ = 40/49 still lock.
The best scheme for the Q9 element is the 8 point scheme with Wβ = 0.1(8/9). Figure
4.17 depicts the effect of different values of weight on the center displacement uC for a Q9
element. As expected, locking of the Q9 element is to a great extent alleviated by low values
of Wβ.

The stress results generally reveal the same trend. It should be noted that for the 1 × 1
mesh, a single value of stress is calculated at points A and B, whereas in the case of the 2×2
and 4×4 meshes, the average of the stresses over the two relevant elements is calculated and
reported. This explains the non-monotonic convergence behavior between the three mesh
densities (although monotonic convergence on displacement does of course not imply that
the stresses converge monotonically over the whole domain).
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Exact solution
9 point scheme

8 point scheme, W = (0.1)(8/9)
5 point scheme, W = (0.1)(8/3)

4 point scheme
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Figure 4.9: Distorted cantilever beam: Effect of distortion d on vB for various integration
schemes with Q8 elements.

4.5 Conclusion

The effect of modified reduced order quadrature rules on the presence of spurious modes
in the stiffness matrices of the Q8 serendipity and Q9 Lagrange membrane finite elements
has been investigated. For these elements, modified reduced order quadratures present an
alternative to full integration using order 3 Gauss rules, (which results in excessively stiff
behavior), and reduced integration using an order 2 Gauss rule, (which results in the intro-
duction of spurious modes on the element level). Even though the spurious mode associated
with the Q8 element is non-communicable, it remains undesirable, and may influence results
in a number of situations of practical importance, e.g. topology optimization.

The alternative 5 and 8 point schemes proposed for respectively Q8 and Q9, allow for the
elimination of spurious modes, while element accuracy is enhanced as compared to order
3 Gauss rules, through the introduction of soft higher order deformation modes. For the
respective elements, the following considerations are pointed out:

For the Q8 element, both the 5 and 8 point rules can be used for integrating the element
stiffness matrix. In each case the spurious mode is eliminated. If the weights W0 and
Wβ are both chosen to be in the order of 10% of the maximum allowable weight, a highly
accurate element is obtained. The numerical cost of the 8 point scheme is higher than the
5 point scheme, with no obvious benefits. Hence it is recommended that the Q8 element be
integrated using the 5 point rule, with W0 = 0.1(8/3) = 8/30.

For the Q9 element, the 5 point rule is inadequate since only one of the three spurious
modes is eliminated. The 8 point rule (with Wβ = 0.1(8/9) = 8/90) results in a rank
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Figure 4.10: Near mechanism with point load.

sufficient element of increased accuracy as compared to the fully integrated counterpart.
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Figure 4.11: Incremental displacement v̂ at A.
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Figure 4.12: Lowest six eigenvalues and eigenvectors (Escher modes) for constrained mesh
with Q9 elements and 4 point integration scheme (mesh size 6 × 6, E = 2.4, ν = 0.2).
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Figure 4.13: Lowest six eigenvalues and eigenvectors for constrained mesh with Q9 elements
and 9 point integration scheme (mesh size 6 × 6, E = 2.4, ν = 0.2).
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Figure 4.14: Lowest six eigenvalues and eigenvectors for constrained mesh with Q9 elements
and 8 point integration scheme, Wβ = 0.1(8/9) (mesh size 6 × 6, E = 2.4, ν = 0.2).
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Figure 4.15: Cook’s membrane
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Figure 4.16: Effect of weight on vC for Cook’s membrane (Q8, 1×1 mesh).
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Figure 4.17: Effect of weight on vC for Cook’s membrane (Q9, 1×1 mesh).
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Chapter 5

New schemes to deal with problematic
material layouts exploiting elements
with drilling degrees of freedom

5.1 Summary

In this chapter, the use of membrane finite elements with drilling degrees of freedom (to be
denoted Q4X) in topology optimization is investigated. Special attention is paid to their use
in schemes to treat problematic material layouts resulting from numerical instabilities, e.g.
checkerboarding and one-node connected hinges. A treatment for a less prominent problem,
termed the diagonal member herein, is also suggested.

Firstly it is shown that the severity of checkerboarding is significantly reduced when em-
ploying elements with drilling degrees of freedom (DOFs), as compared to results obtained
using standard Q4 elements. The salient features of elements with drilling DOFs are fur-
ther exploited in the development of new methods to treat one-node hinges and diagonal
members.

As an application, topology optimization is applied in the design of a piezoelectrically driven
micropositioner. Typically, such devices are designed on an inefficient trial-and-error basis,
whereas in this study topology optimization is applied as a design tool, to somewhat auto-
mate the process. The mechanism employs two piezoelectric stack actuators in a push-pull
configuration to provide the input displacement. Various objective and constraint functions,
including simply maximizing output rotation, as well as maximizing stiffness measures sub-
ject to a required rotation being maintained, are investigated. In each case, unsuitable results
are achieved due to the presence of one-node connected hinges in ‘optimal’ designs. Finally,
the most promising of the two proposed schemes is successfully applied to improve upon
designs achieved using conventional Q4 elements and filter strategies.

117
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5.2 Introduction

In membrane and shell elements, drilling degrees of freedom (DOFs) are highly desirable.
They allow for the modeling of, for instance, folded plates and beam-slab intersections. Due
to the enriched displacement field, these elements are also significantly more accurate than
their counterparts with translational DOFs only [21]. For bending dominated problems for
example, drilling DOFs enhance the accuracy of 4-node elements to a level comparable to
that of 8- or 9-node elements, while the 4-node element with only translational DOFs (Q4)
is notoriously inaccurate. The computational effort associated with elements with drilling
DOFs is low, since the connectivity of the assembled structural stiffness matrix is comparable
to that of Q4.

While most commercial finite element codes include elements with an in-plane rotational
DOFs, in some cases these ‘vertex’ rotations are artificial. In contrast, the membrane finite
elements with drilling rotations used in the problems herein, are based on the continuum
mechanics definition of in-plane rotations. In Chapter 2 a brief overview of these elements
was presented in an elastostatics setting, and some accuracy and stability issues were ad-
dressed. In Chapter 3 the focus was on elements with drilling DOFs in the context of the
piezoelectricity problem.

In this chapter, the use of the elements developed in Chapters 2 and 3 are employed in a topol-
ogy optimization environment. A reasonably detailed introduction to topology optimization
using the SIMP (Simple Isotropic Material with Penalization) material parameterization is
presented in Appendix A. Also discussed are common numerical instabilities, as well as
previously proposed methods to deal with them.

Specifically, the utility of elements with drilling DOFs to deal with checkerboarding, one-
node hinges and diagonal members is investigated. Checkerboarding is characterized by
material being distributed in alternating solid and void elements in a checkerboard-like pat-
tern, as depicted in Figure 5.1(a). A one-node connected hinge occurs when two diagonally
opposite elements are solid while the other two surrounding elements are void as illustrated
in Figure 5.1(b). Finally, diagonal members (which have received far less attention than
either checkerboarding or one-node hinges1) are formed by multiple diagonally connected
elements as depicted in Figure 5.1(c). In each case, the numerical model of these layouts is
poor, the checkerboard being over-stiff and the one-node hinge representing a perfect (im-
practical) hinge with zero rotational stiffness. On the other hand, the numerical model of a
diagonal member subjected to axial loads is acceptable, while in bending it is unacceptably
flexible.

Firstly, it is shown, by numerical example, that simply employing elements with drilling
DOFs, instead of standard Q4 elements, results in a significant reduction in checkerboarding
severity. Additionally, two new schemes to treat specifically one-node connected hinges and
diagonal structural members, are suggested. In principle, the first scheme uses the rotations
computed at interior nodes to detect excessive rotations at suspect nodes. The second
scheme essentially replaces planar elements forming a one-node hinge, where appropriate,

1In fairness, many of the methods to deal with checkerboarding and one-node hinges will also prevent
diagonal members. However some do not, see for example [98].
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(a) (b) (c)

Figure 5.1: Checkerboard, diagonal member and one node hinge material layouts: (a)
checkerboard. (b) one node hinge, (c) diagonal member.

with a more realistic beam model of the material layout while other elements in the mesh
are modelled using planar elements as usual. Instead of only evaluating these new schemes
on popular test problems, such as the MBB beam or the force inverter, their application is
extended to the practical design of a compliant mechanism for micropositioning applications.
The device under investigation is a prototype, designed to demonstrate capability for an
infrared optical system.

In infrared detectors in particular, the detector elements need to be relatively large and
sufficiently isolated from one another. The result is therefore a relatively sparse detector
array often with insufficient density to prevent image aliasing. A possible method to improve
resolution is to mount the detector array on a piezoelectric actuator, to collect the lost part
of the image. To be feasible however, this would need to be accommodated in the design
phase of the optical system. A further possibility (the one considered here) is to retro-fit
existing infrared cameras with an actuator that manipulates other optical devices, such as
lenses or mirrors, in order to recover lost parts of the image.

The design problem is formulated using three different optimization statements. The first
requires only that the rotation of a mirror be maximised. In the other two formulations,
a measure of mechanism stiffness is maximised, subject to a mirror rotation requirement
being met. Upon inspection of the designs resulting from this optimization process, using
Q4 elements and standard filter techniques, unsatisfactory one-node hinges are found at
points where significant bending is required. Therefore, the most promising of the two
newly developed schemes is applied to improve on these results.

This chapter is set out as follows: In Section 5.3 elements with drilling DOFs are briefly re-
capped, while in Section 5.4 the topology optimization problem formulations, for all examples
evaluated in this chapter, are presented. In Section 5.4.2 the effect of element formulation on
checkerboarding is briefly considered. Two new schemes to deal with one-node hinges and
diagonal members are presented in Section 5.5. Numerical results are presented in Section
5.6 and finally concluding remarks are related in Section 5.7.
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5.3 Elements with drilling degrees of freedom

For completeness, in this section a very short introduction to elements with drilling DOFs is
presented in no detail whatsoever. Further details regarding elastic elements can be found
in, for instance [18, 21] and in the other references in Chapter 2. This formulation has also
been extended to piezoelectric materials and the resulting planar piezoelectric elements with
drilling DOFs can be found in Chapter 3 and Long et al. [80].

Usually planar elements possess only two (translational) DOFs per node. Formulations with
a third (in-plane rotational) degree of freedom result in elements with superior accuracy, and
modelling capabilities. For example, planar configurations such as beam-slab connections
can be modelled, and when the planar elements are combined with plate elements, folded
plates can be modelled properly.

In this work, the standard 4-node bilinear quadrilateral elements without drilling DOFs will
be denoted Q4, while the corresponding elements with drilling DOFs will be denoted Q4X.
Finally, 9-node Lagrangian elements (without drilling DOFs) are labeled Q9.

5.4 Problem formulations

In this chapter, a number of different topology optimization problems, all using the SIMP
material model, are considered. For convenience and ease of reference, in this section details
of all test problem formulations are given. The first (and simplest) is the minimum compli-
ance problem. This problem is often used to benchmark newly proposed procedures since
reference solutions2 exist for many problems, including the MBB beam problem. Minimum
compliance problems will be used to numerically determine the effect of element formulation
on checkerboarding.

Since one-node connected hinges are more common in compliant mechanism design problems
than in minimum compliance problems, the efficacy of our new schemes will be evaluated on
popular compliant mechanism topology optimization problems3.

Finally, a topology optimization procedure is employed in the design of a practical compliant
mechanism. The device under consideration is a demonstrator mirror scanning device for
optical applications. For comparison, the problem is posed using three different formulations.
In the remainder of this section, the afforementioned problems are described in more detail.

Unless otherwise specified, a penalty value of p = 3 is employed throughout.

2At least qualitative solutions are known [99]. Generally authors do not publish objective function values,
or only present normalised values making quantitative comparisons difficult.

3Once again, only qualitative comparisons will be made with results for problems such as the force
inverter.
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Figure 5.2: The minimum compliance problem for the MMB beam: (a) Full model, (b)
symmetric model.

5.4.1 The minimum compliance topology optimization problem
using SIMP

The minimum compliance problem seeks to find the material distribution which maximizes
the global stiffness, subject to a bound on the available material. The discrete form of the
minimum compliance problem employing the SIMP material model can be written as:

min
ρ

c(ρ) (5.1)

such that : v(ρ) =
1

vΩ

(

Nel
∑

i=1

ρivi

)

− v∗ ≤ 0 (5.2)

: KU = F (5.3)

: 0 ≤ ρmin ≤ ρ ≤ 1, (5.4)

where compliance is calculated, for the planar problem depicted in Figure 5.2, as

c(ρ) = F TU = UTKU =
Nel
∑

i=1

(ρi)
puT

i k
0
iui. (5.5)

In the foregoing, c is the compliance, ρ is the vector of design variables (representing el-
emental densities) made up of elemental values ρi, i = 1, 2, ..., Nel. In order to prevent
singularities in the finite element analysis, a lower bound on the densities is imposed, de-
noted ρmin. Furthermore, vΩ is the volume of the design domain Ω, vi is the volume of
each element, and v∗ is an upper bound on the permissible volume fraction. The volume
constraint (not the actual material volume) is denoted v(ρ). Finally, U and F are the global
assembled displacement and force vectors, K is the global stiffness matrix, and ui and k0

i

are the elemental displacement vector and the stiffness matrix of a solid element respectively.

If the force is not design dependant, the sensitivity of compliance to the density of a given
element ρi is

∂c

∂ρi

= F T ∂U

∂ρi

, (5.6)

where ∂U
∂ρi

can be found using (5.3) as

∂U

∂ρi

= −K−1∂K

∂ρi

U . (5.7)
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Figure 5.3: A reference optimal topology for the MBB beam discretized using 180×30 ele-
ments.

Now, combining (5.6) and (5.7) gives:

∂c

∂ρi

= −F TK−1∂K

∂ρi

U . (5.8)

Equation (5.8) can be shown to further reduce to

∂c

∂ρi

= −UT ∂K

∂ρi

U = −p(ρi)
p−1uT

i k
0
iui, (5.9)

which contains only elemental quantities.

Finally, the sensitivity of the volume constraint can simply be written as

∂v

∂ρi

=
vi

vΩ

. (5.10)

For comparison, Figure 5.3 depicts a reference optimal topology for the MBB beam problem
depicted in Figure 5.2. To avoid checkerboarding, the sensitivities of the objective function
are filtered using the methods suggested by Sigmund [100]. The solution is computed using
a heuristic updating scheme proposed by Bendsøe [4, 101], based on standard optimality
criterion methods. The scheme for updating the elemental densities is expressed as:

ρnew
i =







max(ρmin, ρi −m) if ρiB
η
i ≤ max(ρmin, ρi −m)

ρiB
η
i if max(ρmin, ρi −m) < ρiB

η
i < min(1, ρi +m)

min(1, ρi +m) if min(1, ρi +m) ≤ ρiB
η
i

(5.11)

where m is a move limit, η(= 1
2
) is a numerical damping coefficient and Bi is found from the

optimality condition as

Bi =

− ∂c

∂ρi

λ
∂v

∂ρi

, (5.12)

where λ is a Lagrange multiplier found using a bisection algorithm. A more complete deriva-
tion of Bi can be found, for example in [4].

In order to reduce the likelihood of convergence to local minima, the penalty parameter p is
increased slowly from 1 to 3 during the optimization procedure. In the following paragraphs,
some brief comments on checkerboarding in minimum compliance problems are presented.
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(a) (b) (c)

Figure 5.4: MBB beam optimal designs for a 30× 90 mesh employing: (a) Q4 elements, (b)
Q9 elements, (c) Q4X elements.

5.4.2 Comments on checkerboarding

Checkerboarding is a numerical instability, commonly observed in reported solutions of min-
imum compliance problems. It is characterized by material being distributed in alternating
solid and void elements in a checkerboard-like pattern. The numerical model of this mate-
rial layout is poor, and appears over-stiff as detailed in [14, 102] and Chapter 7. Although
filters are frequently used to reduce or eliminate this effect, the use of filters complicates
interpretation of results, due to their largely heuristic nature. It is well known that under
certain circumstances, checkerboarding is eliminated when higher order elements (Q8 or Q9)
are used. These elements, however, greatly increase the time required to solve the structural
problem due to the higher number of nodes per element and the reduced sparsity of the
stiffness matrix.

A more detailed theoretical study of checkerboarding, investigating the effect of various
planar element formulations, is presented in Chapter 7 and therefore only selected numerical
results will be presented here. In each case, results are computed using the heuristic updating
scheme based on optimality criteria, see (5.11). To reduce the likelihood of convergence to
local minima, the penalty parameter is increased linearly from 1 to 3 in 33 iterations and
held at p = 3 for a further 16 iterations.

Figure 5.4 illustrates the effect of element formulation on the optimal topology of the popular
MBB beam problem. This problem is detailed in Section 5.4.1 and a reference solution
employing the mesh independency filter due to Sigmund is depicted in Figure 5.3. Note that
in Figure 5.4 only the topology of the symmetric model, see Figure 5.2(b), is depicted.

As is well known, Q4 elements are prone to checkerboard layouts, as depicted in Figure
5.4(a), while in most cases, Q9 elements eliminate checkerboards in the optimal design,
see Figure 5.4(b). Elements with drilling DOFs are shown here to significantly reduce the
amount of checkerboarding in the optimal layout, as depicted in Figure 5.4(c). In fact, in a
number of test problems employing elements with drilling DOFs, checkerboarding has only
been observed in diagonal structural members, similar to those in Figure 5.4(c).

Although checkerboarding is not completely eliminated upon application of elements with
drilling DOFs, the resulting topology is considered more usable than that found using Q4
elements. Major features of the topology, found using elements with drilling DOFs, will not
be lost after a ‘smoothing’ post-processing step, unlike the result found with Q4 elements. It
is however explained in Chapter 7, that it is not possible completely prevent checkerboarding
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by mere application of elements with drilling DOFs. Additionally, it is shown that only if
the skew-symmetric part of the displacement gradient is non-zero will checkerboarding be
(slightly) alleviated.

Finally, in an attempt to highlight the numerical cost benefits of employing lower order
elements, the time required to solve for U in KU = F , was recorded for one iteration
of the MBB beam problem, using Q4, Q9, and elements with drilling DOFs. When the
computational effort (in CPU seconds) is normalized with respect to that of the Q4 results,
the effort using elements with drilling DOFs is 1.80, while the relative effort with Q9 elements
is 11.19, illustrating the significant saving achieved when using lower order elements.

We now return to the presentation of the various topology optimization problem formulations
used to evaluate the proposed schemes.

5.4.3 Compliant mechanism design using topology optimization
and SIMP

Compliant mechanism design employing topology optimization, involves seeking the opti-
mal material distribution within a design domain which optimizes a given objective function
(usually maximizing a certain displacement) while subject to a limit on the available mate-
rial. To illustrate, the popular force inverter problem is used, with the problem graphically
depicted in Figure 5.5. The goal is to maximise the output displacement, in the direction
opposite to the applied force. The problem may be formulated, similar to the minimum
compliance problem, as

max
ρ

uout(ρ) (5.13)

such that : v(ρ) =
1

vΩ

(

Nel
∑

i=1

ρivi

)

− v∗ ≤ 0 (5.14)

: KU = F (5.15)

: 0 ≤ ρmin ≤ ρ ≤ 1, (5.16)

where uout is the output displacement. The output displacement can be extracted from the
solution of the equilibrium equations (5.15) and is given by

uout = LTU . (5.17)

In (5.17), L is a unit vector in the desired output direction within the finite element space.
In the case of the force inverter depicted in Figure 5.5, L is a vector with a single non-zero
(unit) entry corresponding to the DOF which extracts uout from U .

In a process similar to that used to compute the sensitivities of compliance, the sensitivity
of uout to the design variables ρ can be found using (5.15) and (5.17):

∂uout

∂ρi

= LT ∂U

∂ρi

, (5.18)
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Figure 5.5: Compliant mechanism design of a force inverter.

where from (5.15),
∂U

∂ρi

= −K−1∂K

∂ρi

U . (5.19)

Combining (5.18) and (5.19) results in

∂uout

∂ρi

= −LTK−1∂K

∂ρi

U , (5.20)

which can, using the fact that K is symmetric and positive definite, in turn be rewritten as

∂uout

∂ρi

= −λT ∂K

∂ρi

U . (5.21)

In this case, λ is the solution of the adjoint problem

Kλ = L. (5.22)

Finally, the sensitivity of uout can be written in terms of only elemental quantities as

∂uout

∂ρi

= −p(ρi)
p−1λT

i k
0
iui, (5.23)

where λi is the elemental vector (for element i) of displacements associated with the adjoint
load, k0

i is the stiffness matrix of solid element i and ui is the displacements of the original
problem for element i.

An illustrative reference solution to the force inverter problem is depicted in Figure 5.6. Once
again, the heuristic updating scheme, with some minor adjustments to improve stability, is
employed in the solution. In this particular solution, the formation of one-node hinges are
clearly visible even though the mesh-independency filter of Sigmund is again employed.

5.4.4 Mirror scanning design using topology optimization and SIMP

In this section a traditional topology optimization procedure, using standard filtering tech-
niques, is employed in the design of a prototype mirror microscanning device. The objective
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Figure 5.6: A reference optimal topology for the force inverter problem using 48×48 elements.

of the designed mechanism is to rotate a mirror about a single axis, and thereby accu-
rately position the reflected image. Our design employs two 18×5×5mm piezoelectric stack
actuators in a push-pull configuration.

Since this application represents a prototype design, the size and shape of a representative
design domain is simply estimated. The focus of this work is not on the optimal placement
of the piezoelectric actuator, since this issue has already been addressed, see Frecker [103]
for examples. Therefore, in order to determine a suitable position for the piezoelectric stack,
topology optimization trials, with various stack positions, were performed.

After determining a suitable stack position, the optimization problem was run several times
with random starting points. Due to the global nature of the problem, approximately 70%
of the randomly seeded designs resulted in a double-lever mechanism, while the remainder
terminated in local inferior optima. Therefore, in order to ensure the required load-path
for this type of mechanism in the initial stages of the optimization procedure, a double-
lever mechanism is seeded as a starting point. These topology optimization trials further
revealed that an output rotation of around 1◦ is comfortably realized, which translates to
a tip displacement of approximately 0.5mm. The selected initial design with fixed stack
position is shown in Figure 5.7. The figure identifies the design domain as well as passive
(solid and void) regions.

In the results to follow, anti-symmetry is used to model the mechanism as illustrated in
Figure 5.7(b), and the optimization problem is solved with the method of moving asymptotes
(MMA) due to Svanberg [10]. The sensitivities of the objective functions have once again
been modified with the mesh independency filter of Sigmund [100] to avoid checkerboarding.
In the remainder of this section, the formulation of, and results for, the three different
problem formulations are presented.

Mirror scanning device: Formulation 1

The first formulation seeks to simply maximize the output rotation subject to a constraint
on the amount of available material. The required output rotation may be computed given
the length of the mirror and the tangential displacement. The problem formulation can be

 
 
 



www.manaraa.com

5.4. PROBLEM FORMULATIONS 127

Mirror

Piezoelectric
stack

Base
plate

Solid passive
Empty passive
Seeded empty

Seeded solid

(a)

uout

(b)

Figure 5.7: Design domain and problem definition for mirror scanning device: (a) Full initial
design, (b) anti-symmetric finite element model.

written as:

min
ρ

f1(ρ) = −
(

uout

ureq

)2

(5.24)

such that : v(ρ) =
1

vΩ

(

Nel
∑

i=1

ρivi

)

− v∗ ≤ 0 (5.25)

:

[

Kuu Kuφ

KT
uφ Kφφ

]{

U

φ

}

=

{

F

Q

}

(5.26)

: 0 ≤ ρmin ≤ ρ ≤ 1. (5.27)

The output rotation is maximized by maximizing the output tip displacement uout due to
the actuator input. The vertical output displacement is monitored at the top right vertex
of the mirror, see Figure 5.7. As mentioned earlier, an output displacement of ureq=0.5mm
is required to achieve a rotation of 1◦. The displacement is normalized with respect to the
required value and squared so that the direction of the displacement is not prescribed, and
optimization algorithmic scaling issues are avoided.

In this case, the equilibrium equations (5.26) include the piezoelectric terms arising from the
piezoelectric actuators, where φ represents the electric potential and Q the nodal charge.
The upper bound on the volume fraction is v∗ = 0.5. Note that only Kuu is a function of
the design variables ρ since the piezoelectric elements are considered passive solid elements.

The sensitivity of (5.24) can easily be found, using a process similar to that used to calculate
the sensitivity of the output displacement for the force inverter problem, given in (5.23).
Using the chain rule:

∂f1

∂ρi

= −2
uout

u 2
req

(

∂uout

∂ρi

)

. (5.28)
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In this case however, uout is derived from the voltage applied to the electrodes of the piezo-
electric actuators, and not directly due to any applied forces.

In the system of equations (5.26), the unknown displacement and potential vectors U and
φ respectively, are sought. The vectors F and Q represent not only the applied forces and
charges (there are none in this case), but also reactions due to prescribed displacement and
electric potential boundary conditions. Using static condensation, (5.26) can be rewritten
in terms of only the unknown displacements as:

K̂U = F̂ , (5.29)

where the equivalent stiffness matrix is given by

K̂ = Kuu −KuφK
−1
φφK

T
uφ, (5.30)

and where the equivalent force vector is given by

F̂ = F −KuφK
−1
φφQ. (5.31)

This solution strategy, in which electric potentials are condensed from the unknown output
vector, also prevents poor scaling which results if displacements and potentials are solved
simultaneously [69]. Finally, the unknown potentials can be recovered (if necessary) as

φ = Kφφ(Q−KT
uφU ). (5.32)

Therefore, instead of solving for the adjoint equation as in (5.22), the solution to the adjoint
equation

K̂λ = L, (5.33)

is required, where L is an appropriate adjoint load vector. In terms of elementwise quantities,
it can be shown that the sensitivities reduce to

∂uout

∂ρi

= −p(ρi)
p−1λT

i k
0
iui, (5.34)

where the subscript i once again indicates elemental quantities.

Mirror scanning device: Formulation 2

Using the first formulation large displacements may be obtained at the expense of mechanism
stiffness. Such a mechanism may not be robust or stable enough for practical applications.
The problem formulation can therefore be modified so that only the required output dis-
placement is attained. In so doing, an additional requirement can be prescribed, i.e. that
the structure should be as stiff as possible.

In this second formulation, a mechanism with minimum compliance is sought, subject to
a prescribed output rotation being maintained. The required output rotation is, as be-
fore, translated to a required tangential displacement of ureq = 0.5mm. The compliance is
computed using a point force applied to the output displacement point. Note that since

 
 
 



www.manaraa.com

5.4. PROBLEM FORMULATIONS 129

anti-symmetry is used to model the device, this force in fact simulates a force couple. Ad-
ditionally, there is no constraint on volume imposed.

The problem can be written in standard form as:

min
ρ

f2(ρ) =
c

c0
(5.35)

such that : 1 −
(

uout

ureq

)

≤ 0 (5.36)

: K̂U = F̂ (5.37)

: KuuŪ = L (5.38)

: 0 ≤ ρmin ≤ ρ ≤ 1, (5.39)

where c0, the compliance of the initial design, is again introduced to prevent poor scaling of
the optimization problem. The compliance is expressed as

c = LT Ū = Ū
T
KuuŪ , (5.40)

where the displacements Ū are computed by solving the short circuited system given in
(5.38), and where L is the adjoint load used to determine uout. The sensitivity of c in this
case can easily be shown to be

∂c

∂ρi

= −p(ρi)
p−1ūi

Tk0
i ūi, (5.41)

where ūi are again appropriate elemental displacements and k0
i represents stiffness matrix

of the solid element.

Mirror scanning device: Formulation 3

In this final problem formulation, the minimum natural frequency of the structure is max-
imized, again subject to the prescribed tangential displacement of ureq = 0.5mm being
maintained. Since the ‘rotational’ stiffness of the structure is of particular interest, anti-
symmetric boundary conditions are again employed to model only half of the structure.
Finally, as with Formulation 2 there is no constraint imposed on the available volume of
material.

The problem can be expressed as:

min
ρ

f3(ρ) = −λmin

λ0

(5.42)

such that : 1 −
(

uout

ureq

)

≤ 0 (5.43)

: K̂U = F̂ (5.44)

: KuuΦj = λjMΦj, ∀ j = 1, 2, ..., Ndof (5.45)

: 0 ≤ ρmin ≤ ρ ≤ 1, (5.46)
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where λj is the j-th short circuited eigenvalue with corresponding eigenvector Φj and Ndof
is the total number of degrees of freedom. The eigenvectors are normalised so that

ΦT
j MΦj = 1, ∀ j = 1, 2, ..., Ndof. (5.47)

Neglecting possible issues with duplicate or multiple eigenvalues (and the resulting non-
differentiability issues), the sensitivities of λj can be computed using (5.45) as

∂Kuu

∂ρi

Φj + (Kuu − λjM)
∂Φj

∂ρi

=
∂λj

∂ρi

MΦj + λj
∂M

∂ρi

Φj. (5.48)

By premultiplying by ΦT
j , making use of the symmetry of Kuu and M , and substituting

(5.45) and (5.47), the sensitivity of λj to ρi can be shown to be

∂λj

∂ρi

= ΦT
j

(

∂Kuu

∂ρi

− λj
∂M

∂ρi

)

Φj. (5.49)

This sensitivity can be written with elemental quantities only as

∂λj

∂ρi

= φT
j i

(

p(ρi)
p−1k0

i − λjm
0
i

)

φj i, (5.50)

where φj i is the elemental component of element i, corresponding to the jth eigenvector,
and m0

i is the mass matrix of the ith solid element.

The modified SIMP material model, for removing localized eigenmodes in low density ar-
eas, suggested by Pedersen [104], has been used. Specifically, mass and stiffness terms are
interpolated using the following relations:

mass: mi = ρim
0
i for 0 ≤ ρmin ≤ ρi ≤ 1 (5.51)

stiffness: ki = ρ3
ik

0
i for 0.1 < ρi ≤ 1 (5.52)

: ki = ρi
100
k0

i for 0 ≤ ρmin ≤ ρi ≤ 0.1. (5.53)

Reasonable results are achieved without making special provision for multiple eigenvalues.
If problems were encountered, the techniques described in [105] could be employed. Alterna-
tively, a bound-formulation could be applied in which the formulation is typically modified
as follows

max
ρ

β (5.54)

such that : [α]jλj ≥ β, ∀ j = 1, 2, ..., Ndof (5.55)

: KuuΦj = λjMΦj, ∀ j = 1, 2, ..., Ndof, (5.56)

where for example α = 0.95. This additional constraint ensures that consecutive eigenvalues
are at least a certain fraction smaller than the previous. It may however, prevent eigenmodes
from switching order during the iteration process [4].
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(a) (b)

(c)

Figure 5.8: Optimal topologies for: (a) Formulation 1, (b) Formulation 2, (c) Formulation 3.
Although anti-symmetry is used in the finite element model, the complete design is shown.

Numerical results

The optimal topologies for the three different problem formulations are depicted in Figure 5.8.
Figures 5.8(a), 5.8(b) and 5.8(c) depict the optimal topologies resulting from formulations
1, 2 and 3, respectively. In each case, standard Q4 elements are used in the finite element
solution, and the mesh-independency scheme of Sigmund is used to prevent checkerboarding.

As expected, each of the three designs result in similar double-lever mechanisms, although
their connection points to the mirror, vary. The designs resulting from formulations 2 and
3 in particular, are very similar. Furthermore, since formulations 2 and 3 do not have a
restriction on the amount of available material, superfluous features in the area between the
two piezoelectric stacks are obtained, as illustrated in Figures 5.8(b) and 5.8(c).

In each case depicted in Figure 5.8, the optimal design is unacceptible due to the formation
of one-node connected hinges. These mechanisms all exploit the unrealistic flexability of
the one-node connected hinges to attain the required mobility. After interpretation and
post-processing of these designs, it is likely that significantly lower mobility than precicted,
will be achieved due to the higher stiffness of realistic hinges. Schemes which prevent their
formation (or improve their finite element model) within the topology optimization procedure
are therefore sought.
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5.5 New schemes to prevent checkerboarding and one-

node hinges

In this section, two new schemes to deal with one-node connected hinges and diagonal
members are detailed. Results containing diagonal members have been illustrated in Section
5.4.2, when no scheme for checkerboard prevention is employed. Furthermore, in Sections
5.4.3 and 5.4.4 it has been demonstrated that one-node hinges are possible even if Sigmund’s
mesh independency filter is used to prevent checkerboarding.

In particular, we attempt to show how elements with drilling DOFs may be exploited in
formulating schemes to overcome (or improve the modelling of) one-node hinges and diagonal
members. The first scheme is based on the NoHinge scheme proposed by Poulsen [15].
Poulsen’s scheme is modified to incorporate a measure of rotation so that distinction can be
made between a hinge undergoing rotation, and a diagonal member in tension.

The second scheme attempts to perform the ‘post-processing step’ of interpreting the final
topology automatically during the optimization process. Since a one-node hinge is often
interpreted as a thin beam, it seems reasonable to directly use beam finite elements in areas
where one-node hinges or diagonal members occur.

5.5.1 Scheme I: A modified scheme based on NoHinge

The rotations at one-node hinges are usually large, and since rotations are computed at
each node associated with Q4X elements, they present a natural measure to detect excessive
rotations at suspect nodes.

However, since the rotations (and displacements) calculated at nodes surrounded by empty
elements can be large, but are considered irrelevant, a density function is necessary to elim-
inate rotations and displacements calculated at these nodes. In the current scheme, the
NoHinge method proposed by Poulsen [15] is used as an appropriate density function. Com-
bining the scheme of Poulsen with a measure of rotation, results in a scheme which effectively
detects and prevents checkerboarding and, in particular, one-node connected hinges. How-
ever, the new scheme is also capable of distinguishing between a one-node hinge and a
diagonal structural member subjected to purely axial loads

Poulsen developed a local function h that efficiently detects one-node connected hinges. The
scheme is a function of (the densities of) the four elements surrounding each interior node
in the finite element mesh. His scheme makes use of the fact that a one-node hinge is not
quasi-monotonic in density around a node.

Each local (non-negative) h function is simply summed, resulting in a global measure H
which is added to the topology optimization problem as a single additional constraint. This
scheme was shown by Poulsen to eliminate both one-node connected hinges and checker-
boarding.

The local (density) function, h, which detects one-node connected hinges is defined as

h(a, b, c, d) = m(a, b, d) ·m(a, c, d) ·m(b, a, c) ·m(m, d, c), (5.57)
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Figure 5.9: Four paths around node to check for quasi-monotonicity.

where a, b, c, d are the material density values in the elements surrounding the node, as
indicated in Figure 5.9, and m is defined as

m(a, b, c) = |b− a| + |c− b| − |c− a|. (5.58)

It is propsed here to modify this local function h, and to define a new funtion, denoted h′,
as follows

h′ij = |ψij|hij, (5.59)

where i and j are pointers to the location of an interior node at row i and column j in
the finite element mesh, and ψij is the rotation at interior node i, j. For implementation in
a gradient-based optimization environment, the absolute value function is replaced with a
continuous approximation. For example, |x| would be replaced by the approximate function
A, where

A(x) =
√
x2 + ε2 − ε, (5.60)

where ε is an appropriately small number. The modified descriptor function H ′ based on
the modified local function h′ is therefore defined as

H ′(ρ) =
k−1
∑

j=1

l−1
∑

i=1

h′(ρi j, ρi+1 j, ρi j+1, ρi+1 j+1, ψij), (5.61)

where k is the number for rows of elements and l is the number of element columns in the
regular finite element mesh. As in the scheme of Poulsen, this modified descriptor function
is added to the original topology optimization function as a single additional constraint
function:

H ′(ρ) − δ ≤ 0, (5.62)

where δ is a prescribed tolerance. Note that in applications where engineering materials are
used, the rotations may be relatively small, and may therefore need to be scaled.

In (5.59), the sensitivity of each hij is given by Poulsen [15] and the sensitivities of each ψij

can be found using the adjoint method. A significant drawback of this method is therefore
the additional computational effort required for sensitivity calculations. For each iteration
(if no active set type strategy is used to minimize the computational cost) there are as many
additional adjoint loads required as internal nodes.

5.5.2 Scheme II: A new scheme to improve checkerboard, one-
node hinge and diagonal member modelling

In this section, the second of the two new schemes is presented. Instead of explicitly prevent-
ing the formation of checkerboard, one-node hinge and diagonal member layouts as before,
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Figure 5.10: Post-processed interpretation of a 2×2 hinge.

Beam model 1.

Beam model 2.

Figure 5.11: Two different beam models of a hinge.

this scheme aims at improving the finite element model of these layouts by replacing selected
elements with a more representative beam model.

Traditional Q4 elements possess only translational DOFs and therefore combining beam
elements and Q4 elements in a single model often calls for ad hoc modelling ‘tricks’, or the
use of MPC’s. Planar elements with drilling DOFs however, allow for the direct connection
of beam and plane elements.

The use of beam elements in conjunction with elements with drilling DOFs, to improve the
modelling of, in particular one-node hinges, is explored. We argue that instead of eliminating
these layouts, an alternative is to use an improved finite element model.

The idea is therefore to replace undesirable 2-D planar element layouts with an equivalent
beam model, which represents a reasonable post-processed or interpreted model of the origi-
nal 2-D element layout. A reasonable interpretation of a one-node hinge is depicted in Figure
5.10. Note that the interpreted geometry preserves the volume of material in the original
layout.

Herein however two possible beam models for representation of a one-node hinge are evalu-
ated, as depicted in Figure 5.11. The first model replaces the planar elements with diagonal
beams as suggested in Figure 5.10. In a second model, the planar elements are replaced
with a box-like beam structure, similar to the 2-D element’s layout. Although both are
valid interpretations of a one-node hinge, the most natural and easiest to manufacture is the
diagonal beam (beam model 1 in Figure 5.11).

The steps involved in the proposed strategy to automatically detect and replace problematic
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Figure 5.12: Beam replacement scheme.

planar elements by beam elements is schematically depicted in Figure 5.12. Firstly, it is
assumed that the vector of design variables describing the material layout are arranged in a
fixed grid, as is usually the case in topology optimization procedures. Next, possible hinges or
diagonal members are identified, based solely on the material distribution. Then, depending
on whether or not unsuitable material distributions are detected, selected planar elements are
removed from the finite element model, and replaced with an equivalent beam model. This
assembly of beam and planar finite elements is analysed using the finite element method, and
the results passed to the optimization procedure. Finally, the optimization procedure makes
a preciction of an improved material layout, and the process is repeated. If an updated
design is predicted with no unsuitable material layouts, as is the case illustrated in Figure
5.12, planar elements are not replaced by beam elements, making the process of element
replacement completely reversable.

The suggested process by which 2-D planar elements are replaced by their equivalent beam
model, is similar to the way in which multiple materials have been used in topology opti-
mization [106]. Instead of a second density measure however, a function which returns 1 if
the beam model is to be used, and 0 if the planar element is appropriate, is used. This scalar
function is denoted H, with 0 ≤ H ≤ 1, and essentially indicates whether an element forms
part of a one-node hinge or not. The elemental stiffness matrix, denoted ke, is accordingly
calculated as

ke
i,j = ρp

i,j(Hi,jk
0
frame + (1 −Hi,j)k

0
Q4X), i = 1, 2, . . . , N, j = 1, 2, . . . ,M, (5.63)

where the subscript i, j denotes the ith row and jth column in a grid of elements with N
rows and M columns. The density associated with the element is denoted ρi,j, while p is
a penalty parameter used in the SIMP method. The beam and the 2-D planar element’s
stiffness matrices are denoted k0

frame and k0
Q4X respectively.

As a first step towards calculating Hi,j , a local function to detect a one-node hinge at each
interior node in the mesh is required. Our local function shall be denoted h̃ and uses the
four orthogonal basis vectors φk, k = 1, 2, 3, 4, depicted in Figure 5.13 see [98]. The basis
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Figure 5.13: Orthogonal basis vectors.

vectors are given explicitly as

φ1 = [1 1 1 1]
φ2 = [1 −1 1 −1]
φ3 = [1 1 −1 −1]
φ4 = [1 −1 −1 1]

(5.64)

where φ4 represents the basis for a one-node hinge. A vector of element densities in a given
patch of four elements at interior nodes i, j, is given by

vi,j = [ρi,j ρi+1,j ρi,j+1 ρi+1,j+1], (5.65)

where the relationship between the elements and nodes is depicted in Figure 5.14. Now, the
four components of the density vector vi,j in each of the basis vector directions is given by
the dot product of vi,j with φk, k = 1, 2, 3, 4. In order to ensure only positive quantities in
the calculation of the local h̃ function, the dot products are squared and the result denoted
ζk, k = 1, 2, 3, 4:

ζk
i,j = (vi,j · φk)2, k = 1, 2, 3, 4. (5.66)

The local scalar function to identify a one-node hinge for the four elements around interior
node i, j is finally introduced as

h̃i,j =

(

ζ4
i,j

ζ1
i,j

)(

1 − ζ2
i,j

ζ1
i,j

)(

1 − ζ3
i,j

ζ1
i,j

)

. (5.67)

It is clear from this function that 0 ≤ h̃i,j ≤ 1. Poulsen [15] defined a similar function
(NoHinge) using the nonmonotonic behaviour of a one-node hinge around a given node,
see equation (5.57). Unfortunately his function decreases sharply as the density of the
elements decrease. Our new function effectively detects one-node hinges even when made up
of elements with intermediate density. Incidentally, Rozvany [99] independently suggested a
number of different functions to overcome the problems associated with Poulsen’s function.

As depicted in Figure 5.14, an arbitrary interior element i, j can be involved in four different
local h̃ functions, any of which could be a potential one-node hinge. A vector of local
functions to which element i, j contributes, is defined as

H i,j =
[

h̃i−1,j−1 h̃i,j−1 h̃i−1,j h̃i,j

]

. (5.68)

Special attention is now required for boundary elements. For example, considering an ele-
ment in the 1st row and 1st column, the functions h̃0,0, h̃1,0 and h̃0,1 do not exist. Each local
h̃ in (5.68) is therefore defined by

h̃k,l =

{

h̃k,l if hk,l exists, and
∅ otherwise

(5.69)
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Figure 5.14: Patch of nine elements around element i, j.

where ∅ denotes an empty set. So, for example, H1,1 =
[

∅ ∅ ∅ h̃1,1

]

=
[

h̃1,1

]

. The

measure quantifying whether element i, j takes part in a one-node hinge or not, may now
simply be defined as the maximum term in the H i,j vector (5.68).

Hi,j = ||H i,j||∞. (5.70)

Note that Hi,j is a function of only the four element densities defining the maximum local h̃
function.

As illustrated in Figure 5.11, beam model 1 is dependant on the orientation of the element
densities. Therefore, once each element’s Hi,j has been calculated, the orientation of the
beam model needs to be determined. To decide which of the two diagonal beams is more
appropriate, the sign of (vi,j · φ4) can be used. Beam model 2 is not dependant on the
arrangement of the elements.

A possible complication in an optimization environment is the discontinuous nature of Hi,j.
In order to alleviate this discontinuity, the infinity norm in (5.70) is approximated by a
continuous function. A p-norm is not appropriate since values of H > 1 should be avoided,
and the p-norm converges to the infinity norm from above for p ≥ 1. The function

Ĥi,j =
(||H i,j||2)2

||H i,j||1
, (5.71)

satisfies our requirements. Ĥi,j , is a function of all 9 elements depicted in Figure 5.14. For
this reason the orientation of a diagonal beam model (beam model 1 in Figure 5.11) cannot
easily be determined. Therefore, only the box-like model (beam model 2 in Figure 5.11) will
be used for this measure. Finally, in order to prevent ||H i,j||1 from becoming zero, a small
perturbation on the h̃ functions is necessary, therefore ε� 1 is added to (5.67).

5.6 Numerical examples and applications

In this section, the merits of the two newly introduced scheme are evaluated using the test
problems introducted in Section 5.4.
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F

Ω

(a) (b) (c)

Figure 5.15: Illustration of the effect of the proposed scheme to overcome one-node hinges:
(a) The design problem, (b) optimal design using the scheme of Poulsen, (c) optimal design
using the proposed scheme.

5.6.1 Application of Scheme I

A potential drawback of the original scheme of Poulsen is the possibility of undue penalization
of an optimal design. An example of this situation is depicted in Figure 5.15, where the square
design domain is discretized into a 10 × 10 mesh, with loads and constraints as depicted,
and a prescribed volume fraction of v∗ = 0.1. Although this design problem is probably
not practically significant, a similar situation could occur locally in topology optimization
problems, especially if a coarse discretization is used.

Figure 5.15(a) depicts the design problem. Figure 5.15(b) depicts the optimal design found
using the scheme of Poulsen, in which one-node hinges are prevented, and unduly penalized.
Figure 5.15(c) depicts the optimal design using the modified scheme proposed herein (Scheme
I), in which the local functions h′ are expressed in terms of the absolute value of rotation
at the applicable node. In so-doing only those one-node hinges that actually act as hinges
(viz. associated with large rotations) are avoided. For the simple problem depicted in Figure
5.15, zero rotations arise due to the applied load. Therefore no penalization is required or
enforced.

For this problem the optimal topology using the original scheme of Poulsen has to violate
either the volume constraint or the additional constraint imposed by NoHinge. For the mod-
ified scheme, since zero rotation is induced along the diagonal, both the volume constraint
and the constraint on H ′ can be satisfied exactly.

Figure 5.16 depicts the application of the original scheme of Poulsen [15] and our modified
scheme suggested herein to the force inverter compliant mechanism with a 48×48 mesh and
volume constraint v∗ = 0.3. A reference solution was presented in Figure 5.6 illustrating the
formation of one-node connected hinges. The stronger penalization of one-node hinges with
large rotations (enlarged view Figure 5.16(b)) which is induced with the modified method,
forces the density distribution around the hinge towards relatively large areas with interme-
diate densities, as compared to the original scheme of Poulsen (Figure 5.16(a)). Having said
that, both solutions can be accommodated in a post-processing step and are quite similar.
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(a) (b) (c) (d)

Figure 5.16: Application of different filters to the force inverter: (a) optimal design using
new method, (b) enlarged view of potential hinge, (c) optimal design using original method
of Poulsen [15], (d) enlarged view of potential hinge.

5.6.2 Application of Scheme II

In this section the second scheme (Scheme II) is firstly validated on a number of benchmark
problems to determine the modelling accuracy. Thereafter, the scheme is used in a topol-
ogy optimization infrastructure to solve the popular MBB beam problem, and finally the
compliant mirror scanning device.

Numerical accuracy benchmark problems

In an attempt to determine the applicability of this new method, some accuracy benchmark-
ing evaluations of the alternative finite element models are conducted. In the tables to follow,
results for both measures H (calculated in (5.70)) and Ĥ (from (5.71)) are presented. ‘Beam
1’ refers to the diagonal beam model, denoted beam model 1 in Figure 5.11. ‘Beam 2’ refers
to the box-like beam model, labeled beam model 2 in Figure 5.11. Considering the box-like
beam representation (Beam 2), the ratio of horizontal to vertical beam element heights is
equal to the aspect ratio of the 2-D element. In the presentation of the results, Q4 is used
to denote the results employing traditional planar elements without drilling DOFs, whereas
Q4X identifies results for planar elements with drilling DOFs. Furthermore, V refers to the
volume of the beam representation and V 0 to the volume of the original 2-D element. To
determine the sensitivity of the scheme to beam thickness, beam representations with two
different volumes, namely V = V 0 and V = 2V 0, will be evaluated.

The first test problem, used to benchmark the modelling accuracy, is depicted in Figure
5.17(a) with the applied load as shown. It represents a square domain modelled with
(n+1)×(n+1) square elements, and an n×n diagonal member. The black elements in the fig-
ure are solid (ρ = 1) while all other elements are void and have a density of ρ = ρmin = 10−3.
A penalty parameter of p = 3 in (5.63), is used. The displacements calculated with the
various elements are normalized with respect to a finite element analysis, using a refined
mesh, of the post-processed geometry shown in Figure 5.17(a).

Table 5.1 presents the normalized tip displacements of a diagonal member subject to the
load in Figure 5.17(a), using various elements, and for different mesh refinements. For this
problem the model employing diagonal beam elements (Beam 1) is relatively accurate, even
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n=2 n=4 n=8 n=16
H, Beam1, V=V 0 1.6265 1.3203 1.1602 1.0811
H, Beam2, V=V 0 1.9217 2.9930 3.5756 3.8807
H, Beam2, V=2V 0 0.30913 0.44165 0.51366 0.55126

Ĥ, Beam2, V=V 0 1.8674 2.9192 3.5131 3.8309

Ĥ, Beam2, V=2V 0 0.32815 0.46079 0.52669 0.55927
Q4X 5.9252 3.4241 2.2835 1.9220
Q4 8.4119×106 2.2008×106 4.2153×105 7.0902×104

Table 5.1: Normalised tip displacement of a diagonal member.

(a) (b)

Figure 5.17: Modelling accuracy benchmark problems: (a) Diagonal member, (b) one-node
hinge.

for the extreme case of a diagonal member with only two elements (n = 2). The results
indicate that the box beam section with the same volume as the original element (V = V 0)
over-predicts the displacement, while a box section with twice the original volume (V = 2V 0)
is too stiff. Similar results for both functions H and Ĥ employing the box-like beam model
(Beam 2) are calculated. Finally, the diagonal member modeled with Q4X elements, is
not sufficiently accurate to approximate the interpreted geometry. Q4 elements, possess no
stiffness in this configuration, with only the void elements preventing the singularity.

Table 5.2 presents the results of modelling the one-node hinge depicted in Figure 5.17(b), for
the load shown. The first column presents the normalised vertical displacement of the node

nbisect=0 nbisect=1 nbisect=2 nbisect=3
H, Beam1, V=V 0 2.6086 2.3400 2.2747 2.2719
H, Beam2, V=V 0 2.3251 2.4760 2.5342 2.5440
H, Beam2, V=2V 0 0.43379 0.41329 0.40839 0.40584

Ĥ, Beam2, V=V 0 2.3177 2.4684 2.5263 2.5362

Ĥ, Beam2, V=2V 0 0.43525 0.41499 0.41011 0.40756
Q4X 2.9994 2.7231 2.7123 2.7202
Q4 3.5400×106 1.0266×106 2.6914×105 6.8014×104

Table 5.2: Normalised displacement of a one-node hinge.
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Formulation 1 Formulation 2 Formulation 3
Q4 3.7718×10−3 4.1903×10−4 4.1904×10−4

Q4X 1.9901×10−4 2.6926×10−4 2.7286×10−4

Ĥ, Beam2, V=2V 0 5.1435×10−5 1.1554×10−4 1.1136×10−4

Table 5.3: Output displacement of optimal mirror mechanisms.

to which the load is applied, using the discretization shown in the figure. Results are then
presented for the number of mesh bisections of the original mesh given by nbisect. Results
are again normalized with respect to a detailed finite element analysis of the post-processed
geometry depicted in Figure 5.17(b).

For this problem, the model employing diagonal beams (Beam 1) is relatively inaccurate
when compared to the previous test problem. Again the model employing the box-like beam
model over-predicts the displacement if the volume of the original 2-D element is conserved
and is too stiff if the beam representation’s volume is doubled. In this case, the model
simply using elements with drilling DOFs (Q4X) predicts a similar displacement to the
model containing the diagonal beam element. Again, the Q4 elements possess very little
stiffness for this bending-dominated load.

Finally, the new scheme is used to re-evaluate the optimal topologies (of the mirror scanning
device) presented in Section 5.4.4. For brevity, only the results of the box-like beam model
with twice the 2-D element’s volume is presented in Table 5.3. The Q4X elements, which
have been shown in the benchmark problems to under-predict the stiffness of the interpreted
design, produce substantially lower output displacements than the original model with Q4
elements. This is especially true for the design resulting from optimization Formulation 1.
Notably, the beam model employed here severely penalizes the working of the mechanism,
containing one-node hinges and therefore seems a promising method to penalise the formation
of one-node hinges in topology optimization results.

Topology optimization implementation

The developed scheme is now used in a topology optimization infrastructure. The first
benchmark topology optimization test problem is the well known MBB beam, detailed in
Section 5.4.1. Exploiting the symmetry of the problem, only half the beam is modelled.

Figure 5.18(a) depicts the results using Q4 elements with no filters or other devices. The
checkerboarding problem is clearly illustrated. In Figure 5.18(b) the checkerboard layout is
eliminated using the filter of Sigmund [100] with a filter radius of 1.2 element lengths. Figures
5.18(c) to 5.18(e) show the results using the proposed scheme with various beam element
models. From these figures, it is apparent that the beam models are sufficiently flexible to
alleviate checkerboard layouts. Moreover, the results achieved using the new scheme are also
far less defuse than results computed using filtering.

Finally, the new scheme is applied in the design of the mirror mechanism discussed in Section
5.4.4. The optimization is performed for the second problem formulation (Formulation 2 in
Section 5.4.4). The optimal topology in this case, depicted in Figure 5.19, closely resem-
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(a) (b) (c)

(d) (e)

Figure 5.18: MBB beam solutions using: (a) Q4 elements, (b) Q4 with filter of Sigmund, (c)
Ĥ, Beam2, V=V 0, (d) Ĥ, Beam2, V=2V 0, (e) Ĥ, Beam1, V=V 0.

Figure 5.19: Mirror mechanism design using new scheme, Ĥ, Beam2, V=2V 0.

bles the starting design, and is quite different from the results achieved with Q4 elements
and standard filtering techniques, see Figure 5.8(b). Notably, one-node hinges have been
sufficiently ‘stiffened’ such that their existence is practically infeasible.

Upon further investigation, no feasible discrete (0-1) solution has been found for this specific
discretization, despite extensive numerical experimentation. That is to say, the required
displacement can only be achieved by inclusion of one-node connected hinges or by the
introduction of elements with intermediate desities.

Therefore the prediction from the initial topology optimization study, suggesting that a
0.5mm displacement is attainable with 1mm thick hinges is misleading since the unrealistic
flexiblity of one-node hinges are exploited to achieve this displacement.

The optimal design using the scheme suggested herein (depicted in Figure 5.19), rather
compromises on the hinge densities to achieve the required flexibility, indicating that thinner
hinges are required. The suggestion is therefore that a finer mesh is required in order to
allow for thinner hinges.
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5.6.3 Discussion of results

Our two proposed schemes have been applied to solve a number of topology optimization
problems. The first scheme, Scheme I, based on the NoHinge method of Poulsen, was
shown to clearly distinguish between diagonal members subjected to axial loads and hinges
undergoing rotation. However, when applied to practical topology optimization problems,
such as the force inverter problem, results closely resemble those of the NoHinge scheme. A
significant drawback of our method is the additional adjoint loads required for the constraint
sensitivity calculations.

Considering the second scheme, Scheme II, the results of the benchmark accuracy evalua-
tions emphasize that the direct connection between a beam element to a single node of a
planar element (with drilling DOFs) should be avoided since moments cannot accurately be
transfered. Such a situation occurs in the case of the diagonal beam model (denoted Beam
model 1 in Figure 5.11), and the unpredictable behaviour is illustrated by the difference in
accuracy of the results presented in Tables 5.1 and 5.2.

A preferable situation occurs in the case of the box-like structure (Beam model 2 in Figure
5.11) since this structure allows for the transmission of moments from the beam representa-
tion to the 2-D elements predictably. However this beam representation does not accurately
predict the displacement of the favoured interpretation of a hinge depicted in Figure 5.10.
It is worthwhile noting however, that the accuracy of the box-like beam model would be
considerably better if a comparison with respect to a box-like post-processed design were
carried out. However, the manufacture of such a structure would be more complex than than
the diagonal beam-type interpretation. Some work is therefore still required to develop an
improved beam model which accurately predicts the response of the post-processed one-node
hinge (depicted in Figure 5.10).

Nevertheless this scheme remains a promising alternative to filtering methods. It is demon-
strated that this scheme effectively ‘softens’ checkerboard layouts preventing their formation.
Furthermore, one-node connected hinges are shown to be sufficiently ‘stiffened’ such that
their formation is infeasible in compliant mechanism design problems. An additional salient
feature of this scheme applied in a topology optimization environment, is that it does not
require any additional constraints and therefore optimality criteria methods can be used to
solve simple minimum compliance problems. What is more, unlike topology optimization
performed with a ground structure of beam elements, the majority of the resulting design
using this method, is continuous.

5.7 Conclusions

In this chapter the benefits of using membrane finite elements with drilling degrees of free-
dom (DOFs) in topology optimization applications has been demonstrated. These elements
increase numerical accuracy and analysis capability, while not excessively increasing the
computational effort.

Although a detailed study of the checkerboarding instability is carried out in Chapter 7, it is
shown here, via numerical experiments, that employing these elements significantly reduces
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the amount of checkerboarding obtained in optimal topologies.

In addition, elements with drilling DOFs present a natural way of detecting and/or penal-
izing one-node connected hinges and diagonal members. Alternatively, they can be used to
improve on the numerical modelling of one-node hinges and diagonal members. Two new
schemes to treat these material layouts have been suggested, exploiting drilling DOFs.

The first scheme is based on NoHinge, a scheme originally proposed by Poulsen [15]. Our
modified scheme however, uses the rotations computed at internal nodes to distinguish be-
tween material layouts which are behaving as a hinge (rotating) and a diagonal structural
member subjected to axial loads. This scheme however, requires a somewhat numerically
expensive constraint sensitivity computation, and its practical application is therefore some-
what limited.

A second scheme to model a one-node hinge, such that the computed response is similar
to a reasonable interpretation of the material layout, is presented. A function has been
developed which indicates whether or not an element takes part in a layout with unsuitable
numerical representation. Thereafter, selected elements are replaced by an equivalent beam
model which is numerically better behaved. Since this process is dictated by the material
distribution at each iteration, it is reversible so that planar elements which have formerly
been replaced by beam elements, may again become planar elements and vice versa. Using
this new method, it has been demonstrated that it is relatively easy to stiffen a one-node
hinge in compliant mechanism design (or soften checkerboard layouts), thereby preventing
their formation.

Finally, topology optimization has been employed in the design of a mirror scanning device,
employing three different problem formulations. The first seeks to simply maximize the
output rotation, while the other two maximize some measure of stiffness subject to a required
output rotation being maintained. Each of the resulting optimal topologies, computed using
standard Q4 elements and filtering techniques, contain a number one-node hinges and are
therefore not acceptable. The most promising scheme (Scheme II) has therefore finally
been applied in the design of the device. The design employing our new scheme effectively
penalized one-node hinges in critical areas, thereby preventing their formation.
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Chapter 6

Effect of element formulation on
membrane, plate and shell topology
optimization problems

6.1 Summary

In this chapter the effects of membrane, plate and flat shell finite element formulations on
optimal topologies are investigated. Two membrane components are considered. The first is
a standard 4-node bilinear quadrilateral with only two translational degrees of freedom per
node. The other is a 4-node element with three degrees of freedom per node, which properly
accounts for in-plane (drilling) rotations. Plate elements selected for evaluation include
Discrete Kirchhoff Quadrilateral (DKQ) elements as well as two Mindlin-Reissner based
elements, one employing Selective Reduced Integration (SRI), and the other an Assumed
Natural Strain (ANS) formulation, to overcome transverse shear locking. The flat shell
elements studied, consist of an assemblage of these membrane and plate components.

Since DKQ elements are shear rigid, they are only well suited to thin plate problems.
Mindlin-Reissner based elements, on the other hand, are shear flexible and may therefore
be used in the analysis of thin to moderately thick plate problems. For popular benchmark
topology optimization plate problems, both Mindlin-Reissner elements are shown to recover
thin plate results computed using DKQ elements. However, a new benchmark problem
is introduced to illustrate the deficiencies of Mindlin-Reissner elements, employing SRI on
transverse shear terms, without hourglass control. On the other hand, elements with an
ANS formulation are shown to be stable and robust.

For membrane and shell problems, elements which properly account for in-plane rotations
are shown to be insensitive to the penalty parameter which enforces the relationship between
in-plane rotations and displacements. Conversely, it is illustrated that a simple, but ad hoc,
treatment of drilling degrees of freedom for standard bilinear membrane elements is sensitive
to the introduced parameter for a number of popular shell problems. A benchmark problem
which further highlights this sensitivity, in the form of a pretwisted beam, is also introduced.

145
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6.2 Introduction

Due to the competitive nature of industry, designers are increasingly expected to produce
optimal, or near optimal, designs. What is more, they are expected to do so rapidly to
ensure that superior products are launched timeously. This, in part, explains the recent
significant attention that structural optimization has received from research institutes and
industry alike.

The advent of inexpensive computers, capable of performing complex calculations extremely
quickly, has made it feasible to optimize even complex nonlinear structures with reasonable
discretization. Structural optimization could therefore in future (and of course within rea-
son), largely automate the design process and deliver optimal solutions, making what is now
mostly a trial-and-error design improvement strategy redundant.

Sizing and shape optimization rely on the engineer or designer’s judgment and experience to
select an acceptably good starting design, since in both cases the topology is fixed through-
out. Topology optimization is seen as particularly powerful since it is capable of exploring
different topologies during the optimization process. Topology optimization can therefore
generate optimal, sometimes unintuitive designs while simultaneously generating the optimal
shape.

Topology optimization has been receiving unprecedented attention of late. This is particu-
larly evident at specialized structural and multidisciplinary optimization meetings, such as
the recent WCSMO6 congress held in Rio de Janeiro, Brazil, where topology optimization
drew significant attention. All this research effort has led to many advances in topology
optimization, especially in the types of problems which can now be addressed.

The recent revival of interest is largely credited the early paper of Bendsøe and Kikuchi [107]
who employed homogenization techniques to perform generalized shape optimization. Even
before this, a pivotal role was played by the problem of variable thickness plate design, see
for example the original work of Cheng and Olhoff [108].

In this work the popular SIMP (Simple Isotropic Material with Penalization) material pa-
rameterization is employed in order to demonstrate the effect of element selection in topology
optimization. Bendsøe [109] is largely credited for the introduction of the SIMP material
model, which was independently derived by Zhou and Rozvany [110] and Rozvany et al.
[111].

Special attention is paid to plate and shell problems in this chapter. It is therefore appro-
priate to give some background on topology optimization of plate and shell problems at this
point. There has been a plethora of work in this field, so this is by no means an exhaustive
review of all work done. A more thorough review can be found in, for example the book of
Bendsøe and Sigmund [4].

Tenek and Hagiwara [112] employed homogenization techniques to generate optimal isotropic
single layer and multilayer anisotropic plate topologies. They minimize the structural strain
energy subject to a volume constraint, employing sequential linear programming to solve
the optimization problem. The finite elements used in their work are based on Mindlin-
Reissner plate theory, and are four noded bilinear quadrilateral elements with only 5 degrees
of freedom (DOFs) per node (the in-plane rotation is omitted since only flat problems are
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considered).

Their work was extended by Tenek and Hagiwara [113] so that the topology optimization
of plates, as well as single and doubly curved shell structures are considered. Again, strain
energy was minimized subject to a volume constraint. Both homogenization as well as opti-
mal thickness distribution problems are considered. Again, simple four noded quadrilateral
elements with 5 DOFs per node were employed with Selective Reduced Integration (SRI)
to alleviate shear locking. They rely on the cubic relation between element stiffness and
element thickness in bending to prevent intermediate densities.

There are of course numerous other authors who have used homogenization methods to solve
topology optimization problems for plate and shell structures, for example see Dı́az et al.
[114], Krog and Olhoff [115], or see Bendsøe and Sigmund [4] for a more complete list of
references.

Recently Hinton and co-workers [116, 117] have addressed the topology optimization prob-
lem of plate and shell structures using SIMP-like material models. A resizing algorithm
based on Optimality Criteria (OC) methods is used to perform the iterative optimization.
The Mindlin-Reissner based element used in their work is detailed in [118], and employs SRI
on shear terms to overcome transverse shear locking. Since then SIMP-like material param-
eterizations have become very popular in this type of problem, see for example Pedersen
[119], Jog [120] (who incidentally implement the MITC4 and MITC9 elements of Bathe and
co-workers [16]) and Stegmann and Lund [121], who also use MITC elements.

Other interesting developments include simultaneous shape and topology optimization as
performed by Ansola et al. [1, 2] and the hybrid (Homogenization-Evolutionary) method
developed by the ADOPT group, see for example [122, 123, 124] which has been used in
static and vibration problems of plate and shell structures.

Meanwhile, many advances have been made in finite element technology, which have a direct
bearing on topology optimization, since most of the applications in topology optimization
employ the finite element method as an analysis tool. Often, however, little attention is paid
to the actual finite element formulation in the application. In this chapter, the abilities of
the more sophisticated finite element formulations are leveraged in a topology optimization
setting.

Element selection is an important part of finite element analysis, relying on the experience
of the analyst to select a suitable element type. There are several different models for
physical structural elements, e.g. beam, two dimensional planar, plate and shell, or solid
models. Each of these models may have several different formulations, e.g. displacement-
based, hybrid and mixed formulations, etc. perhaps with various interpolations or other
mechanisms to improve element accuracy.

In this chapter, flat shell finite elements as an assembly of plate and membrane elements are
considered. These elements can only be effective if the membrane and plate components are
independently accurate and robust. To illustrate this point, it is demonstrated that the use
of dubious, ad-hoc treatments of, in particular in-plane rotations and methods to overcome
shear locking could lead to misleading ‘optimal’ topologies.

Flat shell elements are simpler than generally curved shell elements, both in terms of formu-
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lation and computer implementation. Since the element Jacobian matrix is constant through
the thickness, analytical through thickness integration is possible. Furthermore, in flat shell
elements the inclusion of drilling DOFs is straightforward and, if required, element out of
plane warp can be handled on the element level with the aid of warp corrections to the nodal
DOFs.

Flat shell elements generally allow for 6 DOFs per node, two in-plane displacements and one
in-plane rotation (membrane contributions) and the remaining two out of plane rotations and
single out of plane displacement (plate bending components). The membrane component of
a the flat shell element is considered first.

In general, membrane elements only require two displacement DOFs per node to adequately
describe the kinematics. However, in membrane and shell elements, the additional rotational
DOFs are highly desirable. They allow for the modeling of, for instance, folded plates and
beam-slab intersections. Due to the enriched displacement field, these elements are also
significantly more accurate than their counterparts with translational DOFs only [21]. For
bending dominated problems for example, drilling DOFs enhance the accuracy of 4-node
elements to a level comparable to that of 8- or 9-node elements, while the 4-node element
with translational DOFs only (Q4) is notoriously inaccurate. Since provision is generally
made for the in-plane rotation, regardless of how it is derived, including drilling DOFs in
flat shell element formulations is largely (numerically) free of charge. Further detail regarding
these elements can be found in Chapters 2 and 3.

As a flat shell element is constituted of membrane and plate components a suitable plate
component is also crucial to the formulation. Successful quadrilateral isotropic plate and shell
elements are mostly based on discrete Kirchhoff-Love theory (e.g. the Discrete Kirchhoff
Quadrilateral (DKQ) [125]) or first order shear deformation theory of Mindlin-Reissner.
The discrete Kirchhoff-Love theory allows only for shear rigid formulation and existence
of the integral expressions of the stiffness matrices requires C1 continuity of interpolation
functions. The Mindlin-Reissner theory includes shear deformation and only C0 continuity
of the shape functions is required. For a large range of engineering problems, especially
layered composites, exclusion of shear deformation leads to unacceptable results and the
Mindlin-Reissner plate formulation is preferred.

However, 4-node displacement-based plate elements derived from Mindlin-Reissner theory
are prone to severe locking associated with the transverse shear deformation and therefore
require modifications in the finite element interpolation to alleviate this shear locking. Shear
locking was overcome in a number of elements through the use of reduced or Selective
Reduced Integration (SRI) schemes. For 4-node plate bending elements, these integration
schemes, however, result in the appearance of spurious zero energy modes. A number of
elements with stabilization methods [89] overcome this problem, however these elements
generally require adjustable parameters.

Although these elements are reported to be highly accurate, alternative methods such as
assumed strain or mixed methods are based on variational principles and are theoretically
better founded. A number of elements based on Mindlin-Reissner theory exist. They differ
mainly with respect to the assumptions in the finite element interpolation or in the handling
of kinematic locking phenomena. One of the most efficient element formulations appears to
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be the Assumed Natural Strain (ANS) formulation of Bathe and Dvorkin [126, 127], which
has some similarities to the elements proposed by MacNeal [128] and Hughes and Tezdu-
yar [129], and are also known as MITCn (Mixed Interpolation of Tensorial Components)
elements, with n the number of nodes.

In this work it is illustrated that, for the SIMP method, Kirchhoff and Mindlin-Reissner
based elements result in different topologies for thick plate problems. SRI, as a method to
overcome shear locking, is also analyzed and compared to an ANS formulation. Finally, an
investigation of the effect of drilling DOFs in membrane and shell elements is reported on.

In the longer term, the aim is to suggest suitable element formulations for work in piezo-
electric actuators, to be used in micropositioning applications1. We should, nonetheless be
mindful of the dangers inherent in the linear assumption [130] in plate and shell formulations,
and its effect in topology optimization [121]. However since micropositioning applications
with extremely small displacements are of interest, the linear assumption is applicable here.
Ultimately this research is to be used for the selection of suitable piezoelectric finite element
formulations for topological optimization applications, similar to those in for example [131].

This chapter is set out as follows: In Section 6.3 a discussion of the topology optimization
problem formulation, and the material parameterization used, is briefly presented. In Section
6.4 a short summary of the finite element formulations used in this work are offered. Section
6.5 presents the findings of the numerical experiments carried out on membrane, plate and
shell problems. Finally, some concluding remarks are presented in Section 6.6.

6.3 Topology optimization problem formulation

In this section, a discussion of the topology optimization formulation used for evaluation, is
briefly presented. Minimum compliance membrane, plate and shell problems are specifically
focused on. Some details of the material parameterization of multilayer designs are given.
Also presented is a very short description of the optimality criteria based updating scheme
employed, as well as the filtering strategy employed to address the mesh dependency problem.

6.3.1 Material parameterization

The discretized finite element model is parameterized using the popular Simple Isotropic
Material with Penalization (SIMP) method [4], in which material properties are scaled with
an artificial density parameter ρ, as will be detailed in this section. As a simple example,
the elastic modulus is parameterized as

E = ρpE0, (6.1)

where ρ is an artificial density parameter with 0 ≤ ρ ≤ 1 and p (usually 1 < p ≤ 6) is a
penalty exponent which renders intermediate densities uneconomical, encouraging the design
to a discrete solution. Finally, E is the modified (parameterized) modulus of elasticity of a
region with artificial density ρ. The materials actual elastic modulus is given by E0.

1However, for the time being, only linear elastic finite element formulations are considered.
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z1
z2

zNl+1

zNl

h

layer 1
layer 2

layer Nl − 1
layer Nl

Material 2: Solid layer

Material 2: Design layer (artificial material)
Material 1: Design layer (artificial material)

Material 1: Solid layer

Figure 6.1: A schematic representation of a general material layup for topology optimization
problems.

As in Lee et al. [116] and Stegmann and Lund [121] numerical experiments with multilayer
shell models are performed. Perforated plates and shells as well as reinforcement, honeycomb
or general multilayer structures are therefore allowed for. Only layups of isotropic materials
are considered, although extension to orthotropic materials with constant [121] or variable
[132] material coordinates is also possible.

Perfect bonding between adjacent layers is assumed, allowing for the use of a single element
through the thickness. Although the same material is used for each layer, material properties
can of course vary due to layerwise artificial density variations. The constitutive relations
are computed using classical laminate theory by analytical through the thickness integration.

For the isotropic materials used in this study, the stress resultant form of the constitutive
equations can be calculated by pre-integration through the thickness. Thus for for a laminate
of thickness h with Nl layers, the relations between the stress resultants and strains for
multilayer shells can be expressed as [116]







N

M

Q







=





A(ρ) B(ρ) 0
B(ρ) D(ρ) 0
0 0 G(ρ)











εm
κ

γ







, (6.2)

where εm, κ and γ are the membrane, bending and transverse shear strains respectively and
N , M and Q are the corresponding stress resultants.

Figure 6.1 schematically shows the problem considered. Although an identical material for
each layer is used, the general case in which each layers material type may vary, even without
artificial density effects, is presented. Specifically, the submatrices in (6.2) are calculated for
each element as:

Membrane stiffness:

A(ρ) =

∫ h
2

−
h
2

C(ρ, z)dz =

Nl
∑

i=1

ρ p
i Ci(zi+1 − zi). (6.3)
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Membrane-bending stiffness:

B(ρ) =

∫ h
2

−
h
2

C(ρ, z)zdz =
1

2

Nl
∑

i=1

ρ p
i Ci(z

2
i+1 − z2

i ). (6.4)

Bending stiffness:

D(ρ) =

∫ h
2

−
h
2

C(ρ, z)z2dz =
1

3

Nl
∑

i=1

ρ p
i Ci(z

3
i+1 − z3

i ). (6.5)

Transverse shear stiffness:

G(ρ) =

∫ h
2

−
h
2

D(ρ, z)dz =

Nl
∑

i=1

ρ p
i Di(zi+1 − zi). (6.6)

For plane stress, C i and Di are given by

Ci =
E0

i

(1 − ν2
i )





1 νi 0
νi 1 0

0 0 (1−νi)
2



 , and (6.7)

Di =
k E0

i

2(1 + νi)

[

1 0
0 1

]

. (6.8)

In the foregoing, E0
i is the elastic modulus and νi the Poisson’s ratio of the material in layer i,

and k is the shear correction factor. The artificial density of layer i is denoted ρi. Note that
layers that are a priori solid or void, and therefore do not form part of the design problem,
are simply accounted for by setting ρi = 1 for solid layers or ρi = ρmin for void layers. The
vector containing the density in the Nl layers is denoted ρ.

Usually, topology optimization problems impose a constraint on the amount of material or
resource which can be utilized. The volume of a given element can be computed (assuming
a constant area A through the thickness) as

Ve(ρ) =

∫ h
2

−
h
2

A(ρ)dz =

Nl
∑

i=1

ρi A(zi+1 − zi). (6.9)

The volume of the entire structure is then easily computed as the sum of all element volumes:

V =

Nel
∑

e=1

Ve, (6.10)

where Nel represents the total number of elements in the assembly. In this work the design
volume, or the volume of the design domain, will also be referred to. This is calculated as the
difference between the total volume (6.10) and the volume of the elements or layers which
are prescribed to be solid or void. In other word, the design volume is the volume of all the
layers which are a function of the design variables (artificial densities).
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(a) (d) (e)(b) (c)

Design
Solid

Design Solid
Design
Solid

Solid
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Solid 1
Solid 2

Design

Design

Design
Solid 1

Figure 6.2: Various multilayer models with solid and design layers. (a) Single layer model, (b)
Ribbed layup, (c) Honeycomb layup, (d) eccentric stiffened material model and (e) general
asymmetric layup.

6.3.2 Layer models

Numerous laminate material models are possible using the material parameterization de-
scribed in Section 6.3.1. Some of the popular schemes which have been used by other
researchers are shown in Figure 6.2. Specifically, the examples depicted in Figure 6.2 are:

1. Single layer material model, depicted in Figure 6.2(a). This represents the classical
topology optimization problem for plate and shell problems, and allows for the intro-
duction of holes through the entire thickness (perforated plates/shells).

2. Three layer ribbed or rib stiffened material model, graphically represented in Figure
6.2(b). This model maintains an inner layer which is a priori solid with outer lay-
ers consisting of artificial material, allowing for the introduction of stiffening zones
concentric to the shell mid-surface.

3. Three layer honeycomb model schematically depicted in Figure 6.2(c). This layup
maintains two solid outer layers of equal thickness, concentric to the mid-surface, and
an inner layer consisting of artificial material. This material description allows for core
design. Although Stegmann et al. [121] question the practical interpretation of such a
design problem, this material model will be employed as a benchmark for comparison
with previously published results.

4. Other more general material models. Models 1 to 3 above, all result in symmetric ma-
terial distributions, and therefore result in no membrane-bending coupling, i.e. B = 0.
For problems such as the two-layer eccentric stiffener in Figure 6.2(d) and the general
asymmetric laminate in Figure 6.2(e), coupling between membrane and bending ac-
tions becomes important. Although these material models present no real conceptual
difficulty, we restrict ourselves to models 1 to 3 above. The effect of numerically ad-
justable parameters and element formulation on these more ‘traditional’ problems are
to be investigated, especially since piezoelectric actuators usually result in symmetric
layups as, for example, the case of piezoelectric bimorphs.
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6.3.3 Problem formulation and sensitivities

In this work, the traditional topology optimization problem of minimizing compliance is
considered. The minimum compliance problem may be written as

min
ρ
c(ρ) (6.11)

such that :

Nel
∑

e=1

Ve ≤ V ∗, (6.12)

: KQ = F , (6.13)

: 0 < ρmin ≤ ρe ≤ 1, e = 1, 2, . . . , Nel (6.14)

where c is the compliance given by c(ρ) = F TQ(ρ), and where the displacements are de-
termined from Q(ρ) = K(ρ)−1F . In this problem, the force vector F is independent of the
artificial density. The allowable volume is denoted V ∗. The sensitivity of the linear volume
constraint in (6.12) can easily be determined. The sensitivity of the compliance (6.11) can
be calculated using the adjoint method [4]. It can easily be shown that

∂c

∂ρe

= −QT ∂K

∂ρe

Q, e = 1, 2, . . . , Nel. (6.15)

This problem has been presented in some detail in Chapter 5, Section 5.4.1. Note that in
the treatment above, each element e in the finite element mesh has only one corresponding
density variable ρe. In the case of the three layer stiffening model, for example, this variable
scales the material properties of the two outer layers simultaneously. Each layer’s material
properties could of course be scaled independently, and therefore in up to Nl variables for
each element (without any solid or void layers) are possible. However, only the former
procedure is considered here.

6.3.4 Design update and filtering strategies

In Section 6.3.3 it was described how the function value and constraint functions are evalu-
ated. In this section the design updating scheme as well as the treatment of some numerical
difficulties in topology optimization are briefly discussed.

The design update is carried out using the standard fixed-point updating scheme based on
the conditions of optimality [4], i.e.

ρk+1 =







max{(1 − ζ)ρk, ρmin}, if ρkB
η
k ≤ max{(1 − ζ)ρk, ρmin}

min{(1 + ζ)ρk, 1}, if min{(1 + ζ)ρk, 1} ≤ ρkB
η
k

ρkB
η

k otherwise
(6.16)

where Bk = − ∂c
∂ρk
λ −1

k , λk is the Lagrange multiplier enforcing the volume constraint and

determined using a simple bisection method, and where ζ = 0.2 is a move limit and η = 1
2

is a tuning parameter. The density distribution at iteration k is denoted ρk. Although the
optimal topology calculated using this scheme is known to be somewhat sensitive to the
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parameters ζ and η [116], the aforementioned settings are exclusively used for all results
presented herein. In this way, the effect of element formulation on optimal topology is
isolated.

The final implementational issue is that of mesh dependency. In order to overcome this
problem, as well as the checkerboarding problem (see [4, 13, 100] for details) the sensitivity
filtering method of Sigmund [100] is used, with a filter radius of 1.2 element side lengths in
all cases.

6.4 Finite element formulations

In this section, the formulations of the various shell finite elements used in the numerical
experiments, are briefly outlined. Flat shell finite elements, which can be thought of as an
assemblage of membrane and plate components, are employed.

Without presenting details of the various finite element formulations at this point, the re-
sulting discretized system can be described using

KQ = F , (6.17)

which usually results from minimization of appropriate functionals based on linear elasticity
assumptions. Here F is a vector representing the global forces and moments, and Q is the
associated vector of global displacements and rotations. K is the global stiffness matrix,
comprising all the assembled elemental stiffness matrices:

K = A
Nel

e=1ke, (6.18)

where A represents the assembly operator and ke the elemental stiffness matrix in the global
coordinate system. In this chapter, membrane, plate and shell problems are considered, and
therefore some details of the formulation of shell elements, which can be used to solve all
of the presented test problems, are presented. Each shell finite element, with associated
elemental displacements and rotations, can be further decomposed as

k q =

[

km kmp

kT
mp kp

]{

qm

qp

}

;
kp = kb + ks

kmp = kmb + kms
(6.19)

where k represents the stiffness matrix in a locally defined coordinate system, with related
local nodal displacements and rotations q. The partitioned membrane and plate stiffness
matrices are denoted km and kp, respectively. The coupling stiffness between membrane and
plate actions is denoted kmp.

As indicated in (6.19), the plate component of the stiffness matrix is composed of bending
(kb) and transverse shear (ks) components. Similarly the coupling between plate actions
can be decomposed into coupling between membrane and bending (kmb) and that between
membrane and transverse shear (kms). It is usually assumed that there is no coupling between
membrane and transverse shear, or between bending and transverse shear components. The
local shell stiffness matrix can therefore be rewritten as

k =

[

km kmp

kT
mp kp

]

. (6.20)
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Figure 6.3: Quadrilateral element with drilling degrees of freedom.
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Figure 6.4: Quadrilateral Mindlin-Reissner plate element.

In the foregoing, the associated local displacements q are decomposed into terms associated
with membrane actions, qm, and those associated with the plate component, qp. Specifically,
qm = [u v θz]

T , where [u v]T represent the in-plane nodal displacements only, and θz denotes
the in-plane rotations or drilling DOFs at each node. A quadrilateral membrane element
with drilling DOFs is schematically depicted in Figure 6.3. The plate transverse displacement
and rotations are given by qp = [w θx θy]

T , as shown in Figure 6.4.

For clarity, some detail of the membrane and plate components of the elemental stiffness
matrix are now presented separately in the local coordinate system.

6.4.1 Membrane elements

Two membrane finite element formulations are employed in this work. The first is the
traditional Q4 displacement based element which neglects in-plane rotations. The rotations
can, however, be accommodated by an extremely simple, but ad hoc treatment. This method
has no theoretical basis, and is used to illustrate the pitfalls of an improper treatment of
element deficiencies.

The second membrane element is based on the variational formulation due to Hughes and
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Brezzi [18], with the finite element implementation investigated by Ibrahimbegovic et al. [21].
This formulation, detailed in Chapter 2, is based on a rigorous mathematical foundation,
and represents a robust, accurate membrane element.

Standard displacement based membrane element

The first membrane element is the standard displacement-based quadrilateral element with
bilinear displacement interpolations, see for example [17]. The potential energy functional
used to derive the elemental stiffness matrix is given by:

ΠQ4
m (um) =

1

2

∫

V

ε T
m CmεmdV − 1

2

∫

V

u T
m fdV, (6.21)

where

ε T
m =

[

∂u

∂x
;

∂v

∂y
;

∂u

∂y
+
∂v

∂x

]

, (6.22)

and Cm is the constitutive relation. The displacement field is denoted um = [u v]T and f
is the body force vector field. Surface tractions and point forces can be considered in the
standard fashion [17].

The element stiffness matrix which results from this functional, is given by

kQ4
m (ρ) =

∫

A

[BQ4
m ]T A(ρ)BQ4

m dA, (6.23)

where BQ4
m is the strain-displacement operator and A(ρ) is the through thickness integrated

constitutive relation given in (6.3). Note that A is a function of the artificial density intro-
duced in the SIMP material parameterization procedure.

This element formulation neglects the in-plane rotational field, θz, and possesses only two
degrees of freedom per node. The dimension of kQ4

m is therefore only 8 × 8. For planar
problems this treatment is adequate. However, for general shell problems the additional
in-plane rotational DOF is required. A method which is sometimes used to account for the
in-plane rotation is simply to add a small fictitious stiffness to each drilling DOF. This is
done by simply replacing the on-diagonal 4 × 4 null matrix with the matrix kθz given in
(6.25).

kQ4α
m =

[

kQ4
m 08×4

04×8 kθz

]

, (6.24)

where kθz = αV E(ρ)









1 −1
3

−1
3

−1
3

1 −1
3

−1
3

1 −1
3

symm 1









, (6.25)

where α is an adjustable parameter, V is the volume of the element and E(ρ) is the elastic
modulus which is a function of the element artificial density. As in Cook et al. [17] the
added matrix provides each drilling DOF with a fictitious stiffness, but offers no resistance
to the mode θ1

z = θ2
z = θ3

z = θ4
z , or any other rigid mode.
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This ad hoc treatment results in no coupling between in-plane displacements and in-plane
rotations, and will probably be sensitive to element aspect ratio and distortion. Although
this method is heuristic, it is tempting since implementation is trivial. Of course there
are numerous other ways of treating drilling DOFs suggested in the literature, see for ex-
ample [23, 24, 33]. Most methods result in a rank deficient stiffness matrix and therefore
require some form of stability control which introduces other adjustable parameters to avoid
potential spurious results.

Membrane element with drilling DOFs

The second membrane element accounts for in-plane rotations based on their continuum
mechanics definition. The approach relies on a variational formulation employing an in-
dependent rotation field, as presented by Hughes and Brezzi [18]. The original element
formulation with drilling DOFs was presented by Reissner [40]. However, the formulation
of Reissner lacks stability in the discrete form. The variational problem of Reissner was
modified by Hughes and Brezzi [18] in order to preserve the stability of the discrete problem.
It utilizes the skew-symmetric part of the stress tensor as a Lagrange multiplier to enforce
equality of independent rotations and the skew-symmetric part of the displacement gradient
in a weak sense. The stress tensor is therefore not a priori assumed to be symmetric.

Hughes and Brezzi show that a displacement-based functional can be derived by eliminating
the skew-symmetric part of stress from a mixed-type functional. Employing a notation
similar to that in [22], the result is the modified functional

ΠQ4γ
m (um, θz) =

1

2

∫

V

ε T
m CmεmdV +

1

2
γ

∫

V

(ωxy − θz)
2dV − 1

2

∫

V

u T
m fdV, (6.26)

where ωxy is the skew-symmetric part of the displacement gradient, given by

ωxy =
∂v

∂x
− ∂u

∂y
, (6.27)

see Chapter 2 for details. The translations are related to the in-plane rotations by γ, over-
coming the rank deficiency present in many formulations with drilling DOFs. The patch test
is passed for all γ > 0. The functional in (6.26) requires only interpolation of displacements
and rotations. The stationary point can be found in the usual manner. The independent
rotations are interpolated using standard bilinear functions, while the in-plane displacement
approximation is taken as an Allman-type interpolation [23].

In matrix form the first term of ΠQ4γ
m can be shown to reduce to

k̃
Q4γ

m =

∫

A

[

BQ4γ
m GQ4γ

m

]T
A(ρ)

[

BQ4γ
m GQ4γ

m

]

dA, (6.28)

where k̃
Q4γ

m is a 12×12 matrix. This is in fact the QC9 or QC9(8) element (depending on the
integration scheme employed to integrate the element area Ωe). This rank deficient element
was reported by Stander and Wilson [95] further to the work of Taylor and Simo [37].
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To eliminate the rank deficiency, the following penalty term, in matrix form, corresponding
to the second term of ΠQ4γ

m is derived:

pγ
m = γ(ρ)

∫

A

{

bQ4γ
m

gQ4γ
m

}

[

bQ4γ
m gQ4γ

m

]

dA (6.29)

where γ(ρ) = αG(ρ), (6.30)

with G the shear modulus which is a function of the artificial density variable, and α an
adjustable parameter as in (6.25). Quite a number of studies have reported a suitable value
of γ. In their original work, Hughes and Brezzi [18] suggest a value of γ = G, the shear
modulus. Recently, however, it has been shown that lower values of γ, such as γ = G× 10−2

gives better results [20, 58] and Chapter 2. Again, γ is a function of the element’s artificial
density ρ.

The element stiffness matrix therefore becomes

kQ4γ
m = k̃

Q4γ

m + pγ
m, (6.31)

pγ
m is integrated by a single point Gaussian quadrature. By fully integrating k̃

Q4γ

m and
combining with pγ

m, spurious zero energy modes are prevented [21]. No additional devices
(e.g. see [24]) are needed. The same holds if a modified 8-point quadrature, or 5-point rule

[52], is employed to integrate k̃
Q4γ

m [21].

The forms of BQ4γ
m , GQ4γ

m , bQ4γ
m and gQ4γ

m can be found in, for example [21, 52] or in Chapter
2.

Membrane locking correction

The membrane locking appearing in elements with drilling DOFs was alleviated in [21] by
employing Taylor’s correction [38]. The final modified membrane strain relationship of the
correction is given by,

ε̄ = BQ4γ
m [u v]T +

(

GQ4γ
m − 1

Ve

∫

V

GQ4γ
m dV

)

θz, (6.32)

where [u v] and θz are the nodal values for displacement and rotation respectively, andBQ4γ
m

and GQ4γ
m are the same as those in (6.28), and their explicit form is shown in, for example

[21]. Finally, Ve is the element volume.

6.4.2 Plate elements

In the numerical study to follow, three different plate elements are employed. The first is the
popular Discrete Kirchhoff Quadrilateral (DKQ) element based on the Kirchhoff assumptions
for thin plates, in which transverse shear is neglected. The other two elements are Mindlin-
Reissner based elements, and differ only in the way in which shear locking is overcome.
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Discrete Kirchhoff Quadrilateral plate element

DKQ plate elements are commonly used in the analysis of thin plate problems. Since trans-
verse shear deformation (TSD) is not permitted (γxz=γyz=0) this plate, and of course the
resulting shell, is transversely shear rigid.

The formulation of the DKQ element is based on the functional (after integration through
the thickness)

ΠDKQ
p (β, w) =

1

2

∫

A

κTCbκ dA−
∫

A

w p dA, (6.33)

such that : βx =
∂w

∂x
and βy =

∂w

∂y
, (6.34)

where

κT = [
∂βx

∂x
;
∂βy

∂y
;
∂βx

∂y
+
∂βy

∂x
], (6.35)

is the curvature, Cb is the moment-curvature relation, p is the lateral load including surface
and body forces and w is the lateral displacement. Furthermore, θx = ∂w

∂y
= βy and θy =

−∂w
∂x

= −βx, as shown in Figure 6.4.

To circumvent the difficulty of the required C1 continuity, the lateral displacements w and
the rotations of the normals to the undeformed mid-surface in the x, z and y, z planes (βx

and βy respectively) are assumed independently. Discrete approximations to the constraint
in (6.34) are imposed by discrete elimination.

The stiffness matrix of the DKQ element is defined in the standard manner for displacement
models as [125]

kDKQ
p =

∫

A

[BDKQ
b ]T D(ρ)BDKQ

b dA, (6.36)

where the specific form of BDKQ
b can be found in, for example Batoz and Tahar [125] and

the bending rigidity matrix D is a function of the artificial density ρ, as shown in (6.5).

Mindlin-Reissner plate element with selective reduced integration

Two Mindlin-Reissner plate elements based on first order shear deformation of Mindlin and
Reissner are evaluated. Both are derived from the following functional which has been
pre-integrated through the thickness:

ΠMR
p (β, w) =

1

2

∫

A

κTCbκ dA+
1

2

∫

A

γTCsγ dA−
∫

A

w p dA, (6.37)

where κ is given in (6.35), Cb is the moment-curvature relationship, C s is the constitutive
relation between shear forces and transverse shear, including the shear correction term ac-
counting for the quadratic transverse shear stress consistent with classical theory. Finally
the transverse shear strains are defined as,

γT = [
∂w

∂x
− βx ;

∂w

∂y
− βy]. (6.38)
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Assuming independent bilinear interpolations for the transverse displacement and section
rotations, the resulting stiffness matrix for a Mindlin-Reissner plate element can be written
as

kMR
p = kMR

b + kMR
s =

∫

A

[BMR
b ]T D(ρ)BMR

b dA+

∫

A

[BMR
s ]T G(ρ)BMR

s dA, (6.39)

where the standard forms of BMR
b and BMR

s can be found in, for example [17]. It is well
known that full integration of the stiffness matrix terms in (6.39) results in severe locking
for thin plates [16, 22, 17]. A simple method to overcome the locking phenomenon is to
employ a selective reduced integration (SRI) scheme on the shear part of the stiffness matrix
kMR

s . This procedure will be employed to calculate the first Mindlin-Reissner plate stiffness
matrix, i.e.

kSRI
p = kMR

b + k̃
MR

s , (6.40)

where kMR
b is calculated using a 4-point scheme and k̃

MR

s is evaluated using a single point
integration scheme. A potential problem with this method of overcoming locking due to
the parasitic shear, is the introduction of spurious zero-energy modes. Two spurious modes
are introduced if SRI is employed, one of which is not communicable. No hourglass control,
e.g. see [93], will be used in order to demonstrate how this mode becomes problematic in
topology optimization problems.

Mindlin Reissner plate element with assumed natural strain

The second Mindlin-Reissner-based plate element overcomes the effects of shear locking by
assuming a mixed interpolation of transverse displacement, section rotations and transverse
strains. In particular the Assumed Natural Strain (ANS) formulation of Bathe and Dvorkin
[126, 127] is considered here. The element of Bathe and Dvorkin has some similarities to the
elements of MacNeal [128] and Hughes and Tezduyar [129].

This element has the advantage that it doesn’t have any numerically adjustable factors (often
required for hourglass control). Furthermore, it contains no spurious zero-energy modes, and
passes all appropriate patch tests.

The stiffness matrix derived from this interpolation procedure finally results in the stiffness
matrix

kANS
p = kMR

b + kANS
s = kMR

b +

∫

A

[BANS
s ]T G(ρ)BANS

s dA, (6.41)

where the bending part of the stiffness matrix is identical to that of kSRI
p , but the shear part

of the stiffness matrix is derived including the ANS interpolations and evaluated using full
integration. The strain operator BANS

s can be derived as described in [16, 126].

6.4.3 Membrane-bending components

For non-symmetric laminates, coupling between membrane and bending constitutive compo-
nents becomes significant, i.e. B in (6.4) is non-zero. Naturally, this part of the partitioned
stiffness matrix, denoted kmb in (6.20), is a function of the specific membrane and plate
components which constitute a given shell element.
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Figure 6.5: Warped and projected shell element.

The kmb submatrix can simply be computed by premultiplying B by the membrane strain-
displacement operator, and postmultiplying by the bending strain-displacement operator.
For simplicity however, in the numerical experiments presented herein only symmetric layups
are considered, and consequently no coupling between membrane and bending actions is
present.

6.4.4 Warp correction and local-global transformation

Where necessary, the effect of out-of-plane warp is corrected by using, the so-called ‘rigid
link correction’ of Taylor [38], is employed to transform the nodal variables to the projected
flat element variables. Figure 6.5 schematically shows the local warped and flat projected
elements.

Ultimately, this corrected local element stiffness matrix k is transformed to the global coor-
dinate system to yield,

kg = T TkT (6.42)

where T is an appropriate transformation matrix.

6.4.5 Shell element denotation

Formulations of two membrane and three plate elements have been presented, which allows
for a total of six different flat shell elements. In this section the denotations used for the
various tested elements are presented.

The two membrane components are denoted:

• Q4α - The standard Q4 displacement based four node quadrilateral element with the
ad hoc treatment of drilling DOFs. The Q4α stiffness matrix is given in (6.24).

• Q4γ - The four node membrane element based on the variational formulation of Hughes
and Brezzi [18], and with local stiffness matrix given by (6.31).
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The three plate components are denoted:

• DKQ - The plate element based on the Kirchhoff-Love thin plate assumption of shear
rigidity. The stiffness matrix in local coordinates is presented in (6.36).

• SRI - The irreducible Mindlin-Reissner based element with selective reduced integration
on transverse shear terms, and stiffness matrix given by (6.40).

• ANS - The assumed natural strain plate element based on Mindlin-Reissner assump-
tions, suggested by Bathe and Dvorkin [126], in which each of the natural strain com-
ponents is independently interpolated. The elemental plate stiffness matrix is given in
(6.41).

Shell elements will be denoted using first the membrane, followed by the plate designations.
Recalling the form of the partitioned stiffness matrix in local coordinates, as presented in
(6.20), the element made up of Q4α membrane and DKQ plate components can be repre-
sented as Q4αDKQ, with elemental stiffness matrix:

kQ4αDKQ =

[

kQ4α
m k

Q4αDKQ
mb

(kQ4αDKQ
mb )T kDKQ

p

]

. (6.43)

Each partitioned matrix in (6.43) is 12 × 12 in size.

6.5 Numerical Examples

Several different finite element implementations are numerically tested in a SIMP topology
optimization setting. A number of popular benchmark problems, which have been used
mostly by researchers to verify effectiveness or correctness of implementation, are investi-
gated. Some new problems, which highlight possible element deficiencies, are also introduced.
Membrane, plate and shell problems are considered. In particular, we wish to investigate:

• The sensitivity of optimal topologies to parameters related to drilling DOFs in mem-
brane and shell structures.

• The effect of employing Selective Reduced Integration (SRI) in Mindlin-Reissner plate
elements, compared to mathematically sound and reliable procedures for overcoming
shear locking.

• The difference in optimal topologies generated using elements based on Kirchhoff the-
ory, compared to those using Mindlin-Reissner theory for thick and thin plate struc-
tures.

In each case, a uniform material distribution which exactly satisfies the volume constraint is
chosen as an initial design or starting point. As detailed in Section 6.3.4 the mesh indepen-
dency filter, due to Sigmund [100], is used to prevent checkerboarding. A filter radius equal
to 1.2 times the element side length is utilized.
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Figure 6.6: MBB beam geometry and constraints.

A stopping criterion based on the number of iterations only has been implemented. There-
fore, in the discussion to follow the final topology, i.e. the topology after 100 iterations will
be referred to as the optimal topology. In some cases numerical deficiencies cause singulari-
ties which result in the gradient of strain energy in particular elements to become very close
to zero or even positive. In such circumstances, these spurious values are replaced manually
by zero. This problem occurs only when SRI plate elements are used, and instances where
the correction is made, are explicitly pointed out.

The remainder of this section details the results of the investigation into membrane, plate
and finally shell problems. After each subsection, a brief discussion of the results is presented
in which the most important points are emphasized.

6.5.1 Membrane example

Since the use of elements with drilling DOFs based on sound mathematical theory is advo-
cated, it is important to determine the sensitivity of optimal topologies using elements with
drilling DOFs, to the adjustable parameter α in Q4γ elements, see (6.30). For the purpose
of this study, the popular MBB beam problem is selected.

MBB beam

The geometry, material properties, restraints and loading are all depicted in Figure 6.6.
Although symmetry is used to model the structure, the complete topology is reported. In
total 2700 square elements are used, 90 elements along the length of the finite element
model, L/2 and 30 elements in the height h. Of course, since only membrane components
are evaluated, only the single layer material model is tested. The available volume fraction
is half of the design domain. In order to stabilize the convergence, the penalty exponent is
stepped from 1 to 3. Also, the objective is normalized with respect to the starting value of
compliance in order to improve the problem scaling.

Figure 6.7 depicts the sensitivity of the optimal compliance calculated using the Q4γ element
to the value of the adjustable parameter α, see (6.30). Note that for the Q4γ membrane
element, a value of α = 1 corresponds the the value of γ suggested by Hughes and Brezzi
[18]. However, recently a number of studies have suggested that a value of α = 10−2 results
in more accurate solutions, see for example [20, 58] and Chapter 2. Therefore the upper
bound of α = 102 which is tested, is significantly higher than the optimal value suggested in
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Figure 6.7: Compliance and constraint function values for optimal topologies as a function
of α for the MBB beam problem.

the studies listed above. However, Hughes and Brezzi [18] showed that elements based on
their variation formulation are convergent for all values of α > 0.

It is clear from this figure that the optimal value of compliance computed using Q4γ elements
is not significantly sensitive to the value of α. In fact, the slight increase in compliance around
α = 102 can be attributed to a corresponding decrease in volume, depicted in Figure 6.7, at
this point rather than an elemental phenomenon. For this example, the optimal topology
calculated using Q4α elements is of course insensitive to the value of α. In fact, for all 2-D
planar analyses the correction in (6.24) is unnecessary since the standard Q4 element (kQ4

m

in (6.24)) is sufficient to capture the planar kinematics. Also plotted in the figure is the
constraint function value at the various values of α tested.

Figure 6.8 depicts the optimal topologies corresponding to each point in Figure 6.7. Clearly,
the optimal topology calculated using the Q4α element and the Q4γ elements are (visually)
identical for the range of α tested. The indication is, therefore that Q4γ elements are reliable
in membrane topology optimization problems over a wide range of α values. Furthermore,
the actual value of compliance resulting from these optimal topologies is stable over a wide
range of α values. An element with α = 0 can be shown to be rank deficient and cannot
always be relied upon to deliver accurate results. Nevertheless, for completeness this problem
is evaluated for α = 0, and satisfactory results are still found.

Readers interested in the convergence histories for the topologies depicted in Figure 6.8 are
referred to Appendix B.1.1.

6.5.2 Analysis of membrane results

Based on the membrane example presented, a number of remarks can be made:
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(a) Q4α element. (Same for
all α.)

(b) Q4γ element, α = 0. (c) Q4γ element, α = 10−6.

(d) Q4γ element, α = 10−4. (e) Q4γ element, α = 10−2. (f) Q4γ element, α = 100.

(g) Q4γ element, α = 102.

Figure 6.8: Optimal topologies of MBB beam for various values of α.

• For membrane problems, Q4α and Q4γ elements produce almost identical topologies.

• As expected, the optimal topologies computed with Q4α elements are not a function
of the adjustable parameter α, for 2-D planar problems.

• The optimal topologies calculated using Q4γ elements are insensitive to scaling pa-
rameter α over a wide range of values.

• The actual value of compliance (objective function value) of the optimal topologies
generated with Q4γ elements are relatively insensitive to the numerical value of α over
the range tested.

6.5.3 Plate examples

In order to determine the sensitivity of optimal topologies calculated using various plate
elements and the SIMP method, a number of popular plate benchmark problems are con-
sidered. Additionally, a new problem which demonstrates the deficiencies associated with
SRI is proposed. The geometry, material properties and support conditions for the plate
example problems are depicted in Figure 6.9.

Both thick and thin plates are studied, with various layer models, i.e. single layer (see Fig-
ure 6.2(a)), rib stiffened design (as in Figure 6.2(b)) and honeycomb design (schematically
depicted in Figure 6.2(c)). Each of these problems is analyzed using Discrete Kirchhoff
Quadrilateral (denoted DKQ) elements, Mindlin-Reissner based elements with selective re-
duced integration on shear terms (denoted SRI) and Mindlin-Reissner based elements with
assumed natural strain interpolations (denoted here as ANS) elements.
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(c) Corner supported square
plate subjected to center
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Figure 6.9: Example plate problems, geometry and constraints.

In each of the multilayer examples to follow, the layup comprises three layers, with layers 1
and 3 (the outer layers) having thickness t

4
and a center layer with thickness of t

2
where t is

the total thickness of the laminate. For the thick plates, thickness is set to t = 0.1 and for
the problems considering thin plates t = 0.01 is used. These aspect ratios are in line with
those used by Zienkiewicz and Taylor [22] to classify thick and thin plates.

In each plate example, the problem symmetry is exploited by modeling only a quarter of the
plate using 900 square elements in total (i.e. a discretization of 30 × 30). Again, although
only a quarter of the structure is modeled, the full topology is reported. The available
volume for the volume constraint is set, in each case, to half of the design volume (i.e. the
sum of the volume of the design layers).

Simply supported plate with center point load

The geometry and constraints for the first plate problem are depicted in Figure 6.9(a). The
problem consists of a square plate which is simply supported, and subjected to a unit point
load applied to the center of the plate. For brevity, only the single layer results will be
detailed in this section. Interested readers are referred to Appendix B.2.1 which contains
the results for the multilayer material models.

The compliance, together with the corresponding optimal topologies are plotted as a function
of plate thickness for the three different plate elements used in the study. Figure 6.10(a)
depicts the compliance as a function of plate thickness plotted on a log-log scale for the
three different plate elements. From Figure 6.10(a) it was confirmed that the DKQ optimal
compliance results, follow a cubic trend almost exactly with only slight variations due to
numerical noise and truncation. Furthermore, Figure 6.11 confirms that the DKQ optimal
topologies are insensitive to plate thickness.

Figure 6.10(b) depicts the results on a linear scale, normalized with respect to the (cubic)
DKQ results. At the thin plate limit (t=0.01), very little difference is observed between
the compliance of the different designs. From this figure, it is clear that the SRI plate
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Figure 6.10: Optimal topology compliance as a function of plate thickness for the simply
supported plate problem.

element is less stiff than the ANS element since higher values of compliance are computed
at each thickness, even when topologies are similar. Also indicated on the figure are the
thickness ranges over which design changes occur, corresponding to the changes in the slope
of the curve. In both cases the design is significantly changed when the compliance of the
structure is approximately 1.2 times that of the DKQ result. Since the slope of the SRI
curve is greater than that of ANS, this point is reached at a lower thickness for the SRI
element and does not occur as gradually as the ANS element. Figure 6.11 depicts the actual
topologies corresponding to the points on the curves in Figures 6.10(a) and 6.10(b).

The conclusion is therefore that the differences in topology resulting from SRI and ANS
elements, is due to the SRI element being ‘softer’ (in transverse shear) than the ANS element.
Since the bending terms are identical, the softer shear terms of the SRI elements offer less
resistance and therefore relatively more strain energy is accommodated by these terms.

Clamped plate with center point load

The geometry for this problem is depicted in Figure 6.9(b). The load considered is again a
unit point load applied to the center of the plate. This problem has been considered by a
number of authors [4, 115], and our thin plate results compare favorably with theirs.

Results similar to those found for the simply supported plate with centre point load are
found for this problem. Therefore, since no real insight is gained through presentation of
these results, interested readers are simply referred to Appendix B.2.2. However, the results
presented in Appendix B.2.2 are significant in that they are similar to those presented by
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previous works that have considered this problem, e.g. Krog and Olhoff [115] and therefore
confirm the correctness of our model and optimization routine.

Corner supported plate with center point load

The final plate geometry with restraints is depicted in Figure 6.9(c). It represents a corner
supported plate (i.e. transverse displacement is constrained at the four corner nodes only).
For this problem, the first load case considered, is again a center point load as before.
The single layer, ribbed and honeycomb material models are again analyzed. Once again for
brevity only selected results are presented in this section, with the results from the remaining
material models and plate thicknesses given in Appendix B.2.3. In particular, only results
for the thin ribbed material model are presented.

The tables accompanying each figure, tabulate the difference in compliance between the
optimal topologies, analyzed using the three plate elements utilized in this study. The
values represent the percentage difference between the compliance of the optimal topology
computed with a given element, and the compliance calculated using the remaining two
elements. Of course, there is no difference between the compliance of the optimal topology
calculated with any element and itself, accounting for the zero terms on the diagonal of each
table.

Figure 6.12 depicts the results for the thin ribbed model subjected to a center point load.
Although all optimal topologies are similar, the convergence history of using SRI elements,
depicted in Figure 6.12(f) indicates that some numerical problems occurred. In fact, during
iteration 73 elements with negative compliance (or positive compliance sensitivity) were
encountered. Table 6.1 confirms that there is not a significant difference between the various
optimal topologies.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 -0.0088 1.5140
Analysed with ANS 0.0281 0.0000 1.3180
Analysed with SRI -0.4786 -0.5854 0.0000

Constraint value -3.3392e-05 1.5709e-05 -2.9578e-05

Table 6.1: Percentage difference: Corner supported square plate subjected to center point
load, ribbed model, t = 0.01.

Corner supported plate subjected to uniform distributed load

In the previous plate problems which have been presented there appears to be little or no
difference between the results computed using the ANS and SRI Mindlin-Reissner based
elements. A problem is now tested for which SRI is known to have difficulty solving [133].

In this problem the same corner supported geometry and restraints, depicted in Figure
6.9(c), are used but the applied load in this case is uniformly distributed over the plate
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surface. In order to ensure that the load is not design dependent, only the ribbed and
honeycomb material models are considered. Again, to illustrate, results are shown only for
the thin ribbed material model (similar to the previous example), while the results of the
other material models are contained in Appendix B.2.4.

Figure 6.14 demonstrates that the optimal topologies calculated using the DKQ and ANS
elements are, once again, similar. The convergence history of the SRI element depicted in
Figure 6.14(f) is extremely erratic due to the element instability. Indeed, many iterations
resulted in elements with slightly negative or near zero compliance. As a result, the optimal
topology calculated using SRI elements is completely different to the other two elements
results. Table 6.2 emphasizes that the compliance of the DKQ and ANS topologies, computed
using SRI elements, is completely spurious. In order to explain this, the displaced shape of
the optimal topology generated using DKQ elements, analyzed using SRI elements is plotted
in Figure 6.13. The hourglass mode which is known to propagate through SRI meshes can
clearly be seen.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 0.2396 79.4795
Analysed with ANS -0.0308 0.0000 79.1851
Analysed with SRI 3583.5656 921450354.1646 0.0000

Constraint value -2.4021e-05 1.6275e-05 6.2786e-05

Table 6.2: Percentage difference: Corner supported square plate subjected to uniform dis-
tributed load, ribbed model, t = 0.01.

6.5.4 Analysis of plate results

For the results which have been presented in this section, a number of observations and
remarks can be made:

• Since the DKQ element is shear rigid, it is not capable of distinguishing between thick
and thin plate topology optimization problems. As a result, identical topologies result
for any plate thickness.

• The ANS elements have been shown to be reliable and stable. They are capable of
reproducing thin plate results similar to those computed using DKQ elements, but are
also sensitive to plate thickness.

• The SRI plate element is ‘softer’ than the ANS element in transverse shear. The SRI
element is therefore more sensitive to plate thickness than the ANS elements. The
result is that occasionally this sensitivity to thickness drives the SRI element to better
designs than that of the ANS or DKQ elements. However, the fact that the SRI
element possesses a communicable spurious mode makes it an unreliable element in
certain circumstances.

 
 
 



www.manaraa.com

170 CHAPTER 6. EFFECTS OF ELEMENT FORMULATION

• In cases where SRI elements manifest the propagating spurious mode, the actual topol-
ogy calculated using SRI elements is not of concern. The conclusion is that there are
cases (even in linear static problems) for which SRI is not suitable. Therefore, the use of
SRI elements with no hourglass control is not recommended in topology optimization.

• Finally, the correctness of the thick plate results should be tested with an analysis of
solid slab-like structures. However, the purpose of this work is simply to show that the
thin and thick plate results differ.

6.5.5 Shell examples

Finally, some results for the analysis of thin shell examples are presented. The flat shell
elements are constructed as an assemblage of the two membrane elements presented in Sec-
tion 6.4.1, and the DKQ plate element presented in Section 6.4.2. Since the effect of plate
formulation on optimal topologies has already been demonstrated, the effect of membrane
component, and especially the inclusion of drilling DOFs, in shell elements is now studied.
Therefore, in order to ensure that the results are not a function of the plate formulation,
only shell elements with shear rigid plate components are evaluated. It is thereby guaranteed
that only thin shell results are recovered, since DKQ elements have just been shown to be
insensitive to plate thickness.

Two problems are presented, the first being a cylindrical shell example, which has been
studied by several authors [116, 134]. The second problem, with geometry in the shape of a
pretwisted beam, is introduced here to highlight the element dependenceny of optimal shell
topologies.

Cylindrical shell

The first shell problem is depicted in Figure 6.15. The geometry, restraints, applied loads
and material properties are all depicted in the figure. The symmetry of the problem is
exploited by only modeling one quarter of the structure with a 30 × 30 discretization. A
volume constraint of half of the design volume is again imposed. Once again, for brevity only
single layer results are presented with ribbed and honeycomb results presented in Appendix
B.3.1.

Figure 6.16 depicts the optimal compliance values for the single layered material model, as
a function of scaling parameter α (see (6.25) for the Q4α membrane component and (6.30)
for the Q4γ component). The row of encircled topologies represent the optimal topologies
generated using the Q4αDKQ element at each value of α. Above these, are depicted the
optimal topologies at the same α value, calculated using Q4γDKQ elements.

Figure 6.16 illustrates that distinctly different topologies are recovered for relatively high
values of α, i.e. α = 1 and α = 100, when the Q4αDKQ element is employed in the finite
element analysis. On the other hand, the optimal topologies generated using Q4γDKQ
elements are shown to be insensitive to the scaling value of α. The figure also shows that
the actual value of compliance is far more sensitive to α when using Q4αDKQ elements than
Q4γDKQ elements. The notable decrease in compliance at high values of α, when using
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Q4αDKQ elements, is due to the artificially high stiffness of the drilling DOFs which, due
to the curvature, is propagated through the structure.

Pretwisted shell

The final shell example is depicted in Figure 6.17. The problem is that of a pretwisted beam,
which is clamped at the root, with two point loads applied at the vertices opposite the fixed
end. The full geometry is modeled with a 40×40 discretization. A volume constraint of half
of the design volume is imposed. For brevity, only the single layer results will be presented.
This problem has previously been shown to be sensitive to the value of α [135].

Figure 6.18 depicts the optimal topologies employing Q4αDKQ and Q4γDKQ elements to-
gether with the corresponding optimal topologies. For this problem, the range of values of α
for which the Q4αDKQ and Q4γDKQ elements result in similar topologies is much smaller
than the cylindrical shell problem. In fact, values of α = 10−6, 10−4 and 102, each result in
different topologies when the finite element model employs Q4αDKQ elements! In contrast,
the Q4γDKQ element is once again shown to be stable for all tested values of α.

6.5.6 Analysis of shell results

Based on the results presented in this section the following remarks are appropriate:

• The optimal topologies computed using Q4γDKQ elements are shown to be insensitive,
over a wide range, to the scaling value of α. In fact, the only perceivable difference in
compliance over the range of tested values of α is a result of the slight difference in
volume.

• In contrast, the optimal topologies resulting from the use of the Q4αDKQ elements
are shown to be a function of α, and that the sensitivity to α appears to be problem
dependent. Authors [17] suggests that if the ad hoc correction for absence of drilling
DOFs (as in the membrane part of the Q4αDKQ) is made, that a value should be
chosen which is small enough not to affect the finite element analysis, while being
large enough to alleviate any spurious modes. It is shown here that even if a small
value of α is selected, preventing numerical instabilities, different topologies result from
those calculated from elements with true drilling DOFs. In fact, the only tested value
of α which consistently results in the same results as the Q4γDKQ element is 10−2.

6.6 Conclusions

Numerical experiments have been performed in order to determine the effect of finite element
formulation on membrane, plate and shell topology optimization problems. It is shown that,
for given topology optimization algorithmic settings, the resultant optimal topology is a
function of the element type. It should be noted however, that ‘optimal’ topologies are known
to be a function of the algorithm settings [116]. Therefore, the global optimal topologies

 
 
 



www.manaraa.com

172 CHAPTER 6. EFFECTS OF ELEMENT FORMULATION

of the evaluated problems are not necessarily reported here. Having said that, optimal
topologies presented herein closely resemble previously reported results, where comparison
is possible. The implication of this study is therefore that the global optimal topology for a
given problem could be a function of the type of element which is used in the analysis.

For membrane problems, it is demonstrated that both standard Q4 (Q4α) and element with
drilling degrees of freedom (DOFs) (Q4γ elements) results in identical optimal topologies.
The Q4γ elements are shown to be largely insensitive, over a large range of values, to the
penalty parameter which enforces the definition of in-plane rotation in terms of in-plane
displacements.

The plate examples presented confirmed that, since the DKQ element is shear rigid, optimal
topologies computed using these elements are not sensitive to plate thickness. Elements
employing an Assumed Natural Strain (ANS) formulation are shown to be robust and re-
liable. The ANS elements consistently recovered thin plate results similar to the DKQ
results. Mindlin-Reissner elements with Selective Reduced Integration (SRI) on transverse
shear terms are shown to be ‘softer’ in transverse shear than the ANS Mindlin-Reissner based
elements and are therefore more sensitive to plate thickness. However, the SRI element pos-
sesses a spurious communicable mode which occasionally renders this element unstable. A
plate example is introduced which exemplifies this problem.

Finally, the effect of parameters related to drilling DOFs of shell problems are studied. It
is shown that optimal topologies computed with elements with drilling degrees of freedom
based on sound mathematical theory are insensitive to the penalty parameter over a wide
range. On the other hand, elements with an ad hoc treatment of drilling degrees of freedom
are found to be far more sensitive to adjustable parameters. This sensitivity to the adjustable
parameter is a furthermore shown to be problem dependent. A new shell example, in the
form of a pretwisted beam, is introduced to highlight this dependence.
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DKQ ANS SRI

t = 0.01
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t = 0.1
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Figure 6.11: Optimal topologies of a simply supported plate subjected to center point load
for various plate thicknesses, computed using different plate elements.
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(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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Figure 6.12: Optimal topologies of a corner supported square plate subjected to center point
load, ribbed model, t = 0.01: (a)-(c) optimal topologies, (d)-(f) convergence histories.

Figure 6.13: Optimal topology, computed using DKQ, of the corner supported plate sub-
jected to distributed load with thin ribbed material model: Displaced shape analyzed using
SRI elements, amplification factor 3 × 10−10.

(a) DKQ. (b) ANS. (c) SRI.

0 20 40 60 80 100
0.9

1

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

 fu
nc

tio
n 

va
lu

e

Iteration number
0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

3.5

4

P
en

al
ty

 p
ar

am
et

er

(d) DKQ.
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Figure 6.14: Optimal topologies of a corner supported square plate subjected to uniform
distributed load, ribbed model, t = 0.01: (a)-(c) optimal topologies, (d)-(f) convergence
histories.
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Figure 6.15: Corner supported cylinder geometry and constraints.
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Figure 6.16: Optimal topologies of a corner supported cylinder with single layer material
model. Above are the optimal topologies solved employing the standard Q4γDKQ element.
On the second row are the optimal topologies employing Q4αDKQ for various values of
scaling factor α. Also shown are the optimal function and constraint values for various
values of scaling factor α.
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Figure 6.17: Pretwisted beam geometry and constraints.
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Figure 6.18: Optimal topologies of a pretwisted beam with single layer material model.
Above are the optimal topologies solved employing the standard Q4γDKQ element. On
the second row are the optimal topologies employing Q4αDKQ for various values of scaling
factor α. Also shown are the optimal function and constraint values for various values of
scaling factor α.
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Chapter 7

Effect of reduced order integration
schemes and elements with in-plane
rotations on checkerboard patterns in
topology optimization

7.1 Summary

In this chapter, the effect of different planar element formulations on the stiffness of a
checkerboard patch of elements is investigated. Standard 4-node bilinear elements (Q4) as
well as 4-node elements with drilling degrees of freedom (Q4X) are considered. Furthermore,
the effect of reduced order integration schemes on quadratic Q8 and Q9 elements is exam-
ined. Employing a reduced 4-point integration scheme in elemental calculations of higher
order elements leads to the introduction of spurious zero-energy modes, some of which are
communicable. Here, it is shown how modified reduced order integration schemes suppress
spurious modes, while simultaneously reducing the stiffness of a checkerboard patch of ele-
ments, thereby making checkerboarding unlikely in topology optimization applications. It is
finally also shown how this reduced stiffness allows for the use of a larger penalty parameter
in the SIMP material parameterization, making intermediate densities unattractive without
risking the formation of checkerboard material layouts.

7.2 Introduction

Topology optimization has seen a resurgence in popularity in recent times, largely credited
to the paper of Bendsøe and Kikuchi [107]. This increased research interest has led to
many significant advances and has seen the use of topology optimization in a number of
applications and fields. Examples include minimum compliance problems (against which
most new procedures and theories are benchmarked) [109, 110], vibration problems [104, 136],
compliant mechanism design [100, 137] and even multiphysics problems [106, 138].

177
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However it was accepted relatively early on, during this recent progress, that there are
several numerical issues which need to be carefully dealt with in order to achieve sensible
results [14]. One of the numerical issues that has received significant attention is the problem
of checkerboarding. Checkerboarding is characterised by a significant part of the material
layout, forming a checkerboard pattern. That is, if the finite element method is employed
and elemental densities are graphically represented on a finite element mesh, the resulting
pattern is reminiscent of a checkerboard.

It is pertinent at this stage to emphasise that topology optimization is a challenging global
optimization problem. It should therefore be qualified that, although checkerboarding is
accepted as being a physical phenomenon, the severity of checkerboarding is dependant on a
number of factors, including: optimization algorithm type and settings (such as step limit),
objective function (checkerboarding is less prevalent in compliant mechanism design than
minimum compliance problems), starting point, as well as problem discretization and, in the
SIMP environment, whether or not continuation methods are applied or not. Furthermore,
there have been numerous schemes suggested to eliminate checkerboarding from a design
generated using topology optimization. Examples include [15, 98] as well as many of the
restriction methods detailed in Appendix A. These schemes naturally also have an effect on
the checkerboarding severity.

The checkerboarding problem was studied in detail by especially Jog and Haber [102] and
Dı́az and Sigmund [14]. By interpreting the layout problem as a mixed variational problem
in density and displacement, Jog and Haber attribute this problem to a violation of the
Babuska-Brezzi or LBB condition. Unfortunately, as reported by Dı́az and Sigmund [14],
the conditions under which the standard Babuska-Brezzi arguments are applied to mixed
variational problems are not met by the layout optimization problem [139].

A different approach was adopted by Dı́az and Sigmund. They suggest that the pattens
can be explained on the basis of local behaviour. They show that numerical approximations
introduced by the finite element method may, under certain circumstances, cause material
arranged in a checkerboard fashion to appear artificially stiff. Under these conditions a
local arrangement in a checkerboard-like fashion appears to be locally stiffer than any other
arrangement of the two constitute materials with the same volume.

Dı́az and Sigmund found that quadratic Q9 elements are less likely to checkerboard than
standard bilinear Q4 elements. However, the numerical stability of higher order elements
(such as Q8 or Q9) comes at a price. They are numerically more expensive than lower order
(Q4) elements due to lower connectivity of Q4 elements. Nevertheless, with the advent of
ever increasing computing power, this additional expense may become less significant in
future. It is therefore still of interest to study the use of higher order elements to alleviate
checkerboarding in topology optimization problems. The work of Dı́az and Sigmund is built
upon here, by exploring the use of reduced order integration schemes in higher order elements
in order to further reduce the stiffness of a checkerboard patch of elements.

In the earlier days of the development of the finite element method, numerical integration
schemes attracted significant attention (e.g. see [54, 86, 87, 88]), possibly due to the limita-
tions of the computing devices available at the time.

Reduced integration schemes are less numerically expensive than higher order schemes. This
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saving in computational effort on the element level comes at the expense of integration
accuracy. However, the induced integration error is often on higher-order terms, which in
some instances actually enhances finite element accuracy. In summary, reduced integration
may be able to simultaneously reduce cost, reduce accuracy in the evaluation of integration
expressions, and increase the accuracy of the finite element analysis. This principle was
recently successfully applied by Long and Groenwold [140] who applied modified reduced
order quadratures to quadratic Q8 and Q9 elements (see also Chapter 4).

It is well known that quadratic elements are less susceptible to checkerboarding than standard
bilinear elements. Since planar elements with drilling degrees of freedom (DOFs) are based
on a quadratic ‘parent element’, the stiffness of a checkerboard arrangement of elements with
drilling DOFs is also briefly investigated.

This chapter is set out as follows: In Section 7.3 the modified numerical integration schemes
employed in this study are briefly described. Section 7.4 presents a very brief discussion of
element formulations with drilling degrees of freedom. The theory used by Dı́az and Sigmund
to estimate the stiffness of a checkerboard patch is summarised in Section 7.5. In Section
7.6 the numerical results of employing reduced order integration on elements with drilling
degrees of freedom, and on higher order elements such as Q8 and Q9, are presented. Finally,
conclusions are drawn in Section 7.7.

7.3 Modified reduced order quadrature integration rules

Reduced integration is frequently used in evaluating the element stiffness matrix of quadrati-
cally interpolated finite elements. Typical examples are the serendipity (Q8) and Lagrangian
(Q9) membrane finite elements, for which a reduced 2×2 Gauss-Legendre integration rule is
frequently used, as opposed to full 3× 3 Gauss-Legendre integration. This ‘softens’ these el-
ement, thereby increasing accuracy, albeit at the introduction of spurious zero energy modes
on the element level. This is in general not considered problematic for the ‘hourglass’ mode
common to Q8 and Q9 elements, since this spurious mode is non-communicable. The remain-
ing two zero energy modes occurring in the Q9 element are indeed communicable. However,
in topology optimization for instance, conditions may arise where the spurious mode associ-
ated with the Q8 element becomes activated. To effectively suppress these modes altogether
in elements employing quadratic interpolation fields, two modified quadratures have been
employed [140]. As compared to fully integrated elements, the new rules enhance element
accuracy due to the introduction of soft, higher-order deformation modes. For completeness,
some detail regarding the schemes employed is presented. For further detail, the reader is
referred to Chapter 4 and [140].

7.3.1 Numerical integration schemes

The schemes proposed in this section were originally proposed by Dovey [54]. Consider the
area integral given by

I =

∫ 1

−1

∫ 1

−1

F (r, s) dr ds, (7.1)

 
 
 



www.manaraa.com

180 CHAPTER 7. REDUCED INTEGRATION APPLIED TO CHECKERBOARDS

α

β

α

(a) 5-point scheme. (b) 8-point scheme.

Figure 7.1: Modified reduced order integration schemes.

where F (r, s) is any polynomial function of r and s. Any polynomial expression of two
variables can be expressed in the form

F (r, s) =
∑

i,j

Aijr
isj. (7.2)

No limits are placed on the summation indices i and j as any arbitrary polynomial is being
considered.

Let any N -point numerical integration rule be written as

I∗ =
N
∑

n=1

WnF (rn, sn) , (7.3)

where I∗ represents the numerical approximation to I. Integration point n is given by (rn, sn)
and the associated weight is given as Wn.

Each term of (7.2) may be trivially integrated as follows:

∫ 1

−1

∫ 1

−1

Aijr
isj drds =

{

22Aij
(i+1)(j+1)

i, j both even

0 otherwise
(7.4)

Based on this exact integral, numerical approximations are proposed with leading error terms
related to ever higher exponents.

7.3.2 A five-point rule

The 5-point rule is depicted in Figure 7.1(a). Due to symmetry, the weights Wα are identical.
The rule is indicated by

I∗ = W0F (0, 0) +WαF (±α,±α). (7.5)
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The second term of (7.5) indicates four points when all combinations of positive and negative
signs are taken. Now, combining (7.2) and (7.3), comparing with (7.4) and grouping terms
including A00, A20 and A02 and disregarding the centre weight (refer to Chapter 4 for details
for details) leads to:

α = 1/
√

3; Wα = 1 and W0 = 0, (7.6)

which is identical to the 2 × 2 Gaussian product rule. However, the center point may be
retained by selecting a value for W0 and computing Wα and α.

The scheme is now defined by

Wα = 1 −W0/4, (7.7)

α =

(

1

3Wα

)
1
2

. (7.8)

The scheme only has physical meaning while 0 ≤ W0 < 4. The error in the A22 term is
minimized as W0 → 0. In practice this implies that the 5-point scheme converges to the
2 × 2 Gaussian scheme as W0 → 0. It was however, shown by Long and Groenwold that it
is preferable if W0 is chosen such that 0 ≤ W0 ≤ 8

3
.

7.3.3 An eight-point rule

The 8-point rule is depicted in Figure 7.1(b). The rule is described by

I∗ = WαF (±α,±α) +Wβ [F (±β, 0) + F (0,±β)] . (7.9)

As demonstrated in Chapter 4, the four equations associated with A00, (A02 and A20), A22

and (A04 and A40) may be satisfied simultaneously and the solution is

α =
√

7/9; Wα = 9/49; β =
√

7/15; Wβ = 40/49. (7.10)

This rule gives the same order of accuracy as the 3 x 3 Gaussian rule. A scheme of lower
accuracy is defined by

Wα = 1 −Wβ, (7.11)

α =

(

1

9Wα

)
1
4

, (7.12)

β =

(

2/3 − 2Wαα
2

Wβ

)
1
2

. (7.13)

In this case both α and β are restricted to be between 0 and 1. This implies that Wβ be
chosen such that 0 < Wβ <

8
9
.
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7.4 Elements with drilling degrees of freedom

In this section, a very brief account of formulations for elements with drilling degrees of
freedom is presented. These membrane elements account for in-plane rotations based on a
continuum mechanics definition of rotation. The approach relies on a variational formulation
employing an independent rotation field, as presented by Hughes and Brezzi [18]. It utilizes
the skew-symmetric part of the stress tensor as a Lagrange multiplier to enforce equality of
independent rotations and the skew-symmetric part of the displacement gradient in a weak
sense. The stress tensor is therefore not a priori assumed to be symmetric.

Hughes and Brezzi show that a displacement-based functional can be derived by eliminat-
ing the skew-symmetric part of stress from a mixed-type functional. Employing a matrix
notation similar to that in [22], the result is the modified functional

ΠQ4γ
m (um, θz) =

1

2

∫

V

ε T
m CmεmdV +

1

2
γ

∫

V

(ωxy − θz)
2dV − 1

2

∫

V

u T
m fdV, (7.14)

where ωxy is the rotational part of the displacement gradient, given by

ωxy =
∂v

∂x
− ∂u

∂y
. (7.15)

In the foregoing, εm represents the membrane strains, Cm the membrane constitutive matrix,
um denotes the in-plane membrane displacement field [u, v] and f the body forces.

The independent rotations θz, are interpolated using standard bilinear functions, while the
in-plane displacement approximation is taken as an Allman-type interpolation [23].

In matrix form the first term of ΠQ4γ
m can be shown to reduce to

k̃
Q4γ

m =

∫

A

[

BQ4γ
m GQ4γ

m

]T
A
[

BQ4γ
m GQ4γ

m

]

dA, (7.16)

where k̃
Q4γ

m is a 12 × 12 matrix.

The penalty term, in matrix form, corresponding to the second term of ΠQ4γ
m is derived:

pγ
m = γ

∫

A

{

bQ4γ
m

gQ4γ
m

}

[

bQ4γ
m gQ4γ

m

]

dA, (7.17)

where γ = γ̄G, (7.18)

with G the shear modulus which is a function of the artificial density variable, and γ̄ an
adjustable parameter as in (6.25).

The element stiffness matrix therefore becomes

kQ4γ
m = k̃

Q4γ

m + pγ
m. (7.19)

pγ
m is integrated by a single point Gaussian quadrature. By fully integrating k̃

Q4γ

m and
combining with pγ

m, spurious zero energy modes are prevented [21]. No additional devices
(e.g. see [24]) are required. The same holds if a modified 8-point quadrature, or 5-point rule

[45], is employed to integrate k̃
Q4γ

m .

The forms of BQ4γ
m , GQ4γ

m , bQ4γ
m and gQ4γ

m can be found in, for example [21]. Once again, for
more detail regarding these elements, the reader is referred to Chapters 2 and 3.
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(a) Rectangular hole (b) Rank 2 material
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Figure 7.2: Example base cells often used in topology optimization.

7.5 On the stiffness of a checkerboard patch of ele-

ments

In this section the essential theory and results of Dı́az and Sigmund [14] will be highlighted.
Since much of the work presented in this section is based on their work, and in order to ensure
continuity for those readers familiar with the work of Dı́az and Sigmund, their notation will
be used here. This section starts with a short summary of the minimum compliance topology
optimization problem using homogenization theory and concludes with the main results from
their paper.

7.5.1 Topology optimization using homogenization

Even with todays advanced computing power, a numerical analysis of a composite structure
with complex microstructure, is infeasible if the microstructure itself is modelled. A cellular
body, made of solids and voids, may be considered a simple such composite material. This
is typically the type of material exploited to perform topology optimization.

Homogenization theory can be employed to replace a composite with periodic microstructure,
with an effective material model. These materials are usually described in terms of a base
cell, the smallest representative unit of material. Homogenization theory allows macroscopic
material characterization, based solely on analysis of the microscopic base cell. Evaluation of
the base cell can be performed analytically if the base cell is sufficiently simple in structure.
Alternatively, a numerical analysis, usually involving the Finite Element Method (FEM),
may be called for.

In a topology optimization setting, topology is most frequently described by a continuous
density function which effectively transforms the problem into a material distribution prob-
lem using composite materials.

In general, the composite (base cell) is made up of a mixture of two isotropic materials,
one strong with constitutive tensor E+, and one weak with constitutive tensor E− � E+.
The weak material typically represents a void, allowing admission or removal of holes in the
structure.

Examples of two common base cells are depicted in Figure 7.2. The first is a square cell
with rectangular hole, see Bendsøe and Kikuchi [107] and the second is a so-called Rank 2
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material as studied by, for example Milton and Kohn [141].

The continuous density function, describing the material layout or topology, of these two
base cells is given by the ratio of strong material volume to total base cell volume, in terms
of cell parameters (a1 and a2 in Figure 7.2). The effective constitutive tensor Ē, is then
sought in terms of cell parameters a1, a2 and of course the two isotropic material property
tensors E+ and E−.

The minimum compliance topology optimization problem consists of finding the material
layout which minimises the mean compliance, while maintaining a bound on the amount of
strong material:

min
ρ∈XM

min
a∈Xρ

f(u∗), (7.20)

where f(u∗) is the mean compliance at equilibrium, corresponding to displacement solution
u∗.

XM =

{

ρ ∈ L∞(Ω) : 0 ≤ ρ ≤ 1,

∫

Ω

ρ dx ≤M

}

, (7.21)

where M is an upper bound on the amount of strong material, Ω is the structural domain
and ρ is a scalar density function based on unit cell parameters a = {a1, a2}. Finally,

Xρ =
{

a ∈ R2 : a1 + a2 − a1a2 = ρ, 0 ≤ a1, a2 ≤ 1
}

. (7.22)

It is well known that the minimum compliance topology optimization problem can be cast
in the form:

max
ρ∈XM

min
u∈K

{
∫

Ω

max
a∈Xρ

w dx− f(u)

}

, where (7.23)

K =
{

uh ∈ H1(Ω) : uh = 0 on Γ0
}

. (7.24)

K represents the set of kinematically admissible displacement fields u and

w =
1

2
Ē(a)ε(u) · ε(u) (7.25)

is the strain energy density resulting from strain field ε(u).

The implication of (7.23) is that for fixed density ρ and known strain field ε(u), the optimum
local orthotropy is such that strain energy density is maximised [4, 14].

The finite element discretization of the problem in (7.23) can be written as

max
ρh∈Xh

R

min
uh∈Kh

{

N
∑

e=1

1

2

∫

e

max
ae∈Xρe

Ē(ae)ε(ue) · ε(ue) dx− f(uh)

}

, (7.26)

assuming that Ω can be covered by N square finite elements. The density discretization ρh

is assumed to be constant within each element e, taking value ρe. Standard shape functions
Nα(x) are used to construct uh ⊂ K, where elemental interpolations on element e are given
by:

ue =
n
∑

α=1

Nα(x)ue
α, n = number of nodes, (7.27)

and ue
α are nodal DOFs.

 
 
 



www.manaraa.com

7.5. ON THE STIFFNESS OF A CHECKERBOARD PATCH OF ELEMENTS 185

E−

E−

E+

E+

Figure 7.3: Checkerboard patch with average density ρ =1/2.

7.5.2 Effective properties of a checkerboard

Continuing to follow the procedure set out by Dı́az and Sigmund, it is now demonstrated
how the effective properties of a ‘black-and-white’ checkerboard patch of finite elements are
computed. That is, the material distribution of a patch with average density ρ = 1/2. This
represents a unit base cell Y which is divided into four equal quadrants Y i such that E = E−

in Y 1 ∪ Y 3 and E = E+ in Y 2 ∪ Y 4, as shown in Figure 7.3.

The homogenized stiffness tensor is computed using the well-known formulae [4, 14, 141,
142, 143] by integration over the base cell area as

Ēijkl =

∫

Y

{

Eijkl − Eijpqε
∗

pq[χ
(kl)]
}

dy, (7.28)

where the Y−periodic test fields χ
(kl)
p are found as the solution to the equilibrium equations

∫

Y

Eijkl

{

ε∗pq[χ
(kl)] − ε0

(kl)

pq

} ∂vi

∂yj

dy = 0, (7.29)

for all v ∈ V h, and k, l = 1, 2.

The finite element space V h contains the same shape functions as those used to approximate
the displacement field, defining

V h =
{

v(y) ∈ R2 : v(y) = Nα(y)vi
α, if y ∈ Y i, i = 1, . . . , 4

}

, (7.30)

and where in the unit base cell, v(0, y2) = v(1, y2) and v(y1, 0) = v(y2, 1). The effective
material tensor, given in (7.28) can be computed after solving (7.29) using three linearly

independent test strains ε0
(kl)

pq as discussed in, for example, [4, 141, 142, 143, 144].

In their paper, Dı́az and Sigmund [14] find solutions to (7.28) and (7.29) using analytical
integration of the finite element discretization. For an undistorted mesh of elements, this is
equivalent to using full numerical integration, i.e. a 4 point Gauss quadrature for standard
4 noded elements and a 9 point scheme for 9 node elements.

They present the optimal strain energy density w∗ for a known strain field ε̄ and average
density ρ = 1/2 using: (i) rank 2 materials, (ii) materials with a base cell described by
a rectangular hole, as well as (iii) SIMP parameterizations. They then use the foregoing
theory to compare these results to the strain energy density calculated using a patch of 4
square elements, as depicted in Figure 7.3 with the same average density and applied strain
field.
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In particular, for rank 2 materials, it can be shown (see Dı́az and Sigmund [14] and Jog et
al. [145]) that the optimal strain energy density for fixed strain ε̄ and density ρ = 1/2 is
given by:

w∗

Rank2(ε̄) =
1

2
max

ae∈X,ρe=1/2
ĒRank2(a)ε̄ · ε̄, (7.31)

where ĒRank2 is the effective property tensor of the Rank 2 material and the a’s are as
depicted in Figure 7.2(b). For a void weak material (E− = 0), w∗

Rank2(ε̄) may be expressed
analytically (see Dı́az and Sigmund [14]). This result is compared to

w∗

Q4(ε̄) =
1

2
ĒQ4ε̄ · ε̄, and (7.32)

w∗

Q9(ε̄) =
1

2
ĒQ9ε̄ · ε̄, where (7.33)

ĒQ4 and ĒQ9 are, respectively, the effective constitutive tensor of the ‘black-and-white’ patch
of Q4 and Q9 elements, as depicted in Figure 7.3.

Similarly, for ρ = 1/2, the optimal strain energy density for a microstructure with a base
cell described by a rectangular hole is given by

w∗

RHole(ε̄) =
1

2
max

ae∈X,ρe=1/2
ĒRHole(a)ε̄ · ε̄, and (7.34)

and for the SIMP material model,

w∗

SIMP(ε̄) =
1

2
ĒSIMP(ρ)ε̄ · ε̄ =

1

2

(

1

2

)p

E+ε̄ · ε̄, (7.35)

where ĒRHole and ĒSIMP are the associated constitutive tensors. Given the preceding, the
following relationships can be proven:

• For rank 2 layered materials (denoted Rank 2),

w∗

Q4(ε̄) ≥ w∗

Rank 2(ε̄), (7.36)

w∗

Q9(ε̄) < w∗

Rank 2(ε̄), (7.37)

• For a square cell with rectangular hole (denoted RHole),

w∗

Q4(ε̄) > w∗

RHole(ε̄), (7.38)

w∗

Q9(ε̄) < w∗

RHole(ε̄), (7.39)

• For SIMP material model (denoted SIMP),

w∗

Q4(ε̄) = w∗

SIMP(ε̄), for p = 1, (7.40)

w∗

Q4(ε̄) > w∗

SIMP(ε̄), for p > 1, (7.41)

w∗

Q9(ε̄) < w∗

SIMP(ε̄), for p < p∗1(ν), (7.42)

w∗

Q9(ε̄) > w∗

SIMP(ε̄), for p > p∗2(ν) (7.43)
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where

p∗1(ν) =
log (22/(6 − 5ν))

log(2)
, and (7.44)

p∗2(ν) =
log (2(6 − 5ν))

log(2)
. (7.45)

Dı́az and Sigmund suggest that checkerboarding is likely to occur if the strain energy density,
based on the effective material tensor of a checkerboard patch of elements (e.g. ĒQ4, ĒQ9),
is greater than that based on the effective material tensor of the relevant material parame-
terization (e.g. ĒRank2, ĒRHole or ĒSIMP). These relations can therefore be used to, not only
explain why checkerboarding occurs, but also in the case of the SIMP material model, to
recommend a suitable penalty parameter p.

7.6 Numerical results

In this section, some numerical results of the investigation are presented. Firstly, the effect
of finite element formulation on the local χ field is explored qualitatively. Next, effective
material properties of a checkerboard patch of elements are computed, employing various
elements, and making use of various integration schemes. These effective properties are then
used to compute strain energy densities for prescribed straining conditions. Finally, for the
SIMP material model, the effects of integration scheme on the bounds of penalty parameter
p∗1 and p∗2, are investigated.

The following elements are considered in this study:

• Q4, a standard 4-node displacement based element.

• Q4X, a 4-node element with drilling degrees of freedom, based on the formulation
presented in Section 7.4.

• Q8, the serendipity 8-node element based on the same formulation as Q4.

• Q9, the Lagrange 9-node element based on the the same formulation as Q4 and Q8.

The integration schemes evaluated are listed below:

• 4-point Gauss-Legendre scheme, which is standard for evaluating Q4 elements and
exact for undistorted elements. It is also commonly used to evaluate Q8 elements,
although it leads to a spurious mode on the elements level.

• 5-point scheme, with varying center weight W0, see Section 7.3.2.

• 8-point scheme with varying Wβ, see Section 7.3.3.

• 9-point scheme Gauss-Legendre scheme, which is the standard in evaluation of the Q9
element matrices and is also commonly used for Q8 elements.
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(b) Q8 (c) Q9(a) Q4 and Q4X

Figure 7.4: Local χ fields for various elements resulting from mean strain field ε̄11 = ε̄22 = 1
and ε̄12 = 0.

7.6.1 Effect of element formulation on local χ field

The solution to the cell problem (7.29) employing Q4 elements has been shown to be ex-
tremely simple, e.g. see [14]. The periodic deformation subjected to constant test strain is
such that the strain in the patch is constant. That is to say,

ε∗[χ(kl)] = 0. (7.46)

To illustrate, the χ field for a patch of Q4 elements subjected to a constant prestrain ε̄11 =
ε̄22 = 1, and ε̄12 = 0, is depicted in Figure 7.4(a).

It is now investigated whether the additional straining modes, associated with Q4X elements,
result in non-constant patch strains when subjected to similar test strains. These elements
are based on an 8-node parent element employing quadratic Allman-type shape functions as
explained in Section 7.4. The side nodes (5-8) are then ‘condensed’ to the corner nodes (1-4)
and related to corner nodal rotations. Q4X elements, therefore possess 3 degrees of freedom
per node in total, i.e. 2 in-plane translations and an in-plane rotation.

Unfortunately, as with Q4 elements, only constant patch strains result for Q4X elements.
This can be attributed to the fact that, in the solution of the cell problem, the rotational
degrees of freedom are not activated by any of the test strains, and therefore neither are the
higher order straining modes. The resulting local χ field is thus identical to that of Q4, as
depicted in Figure 7.4(a).

In previous work, e.g. see [146] and Section 5.4.2, it has been shown that Q4X elements do
in fact yield slightly different results in terms of checkerboarding than Q4 elements. This
is probably due to the fact that for realistic problems with complex strain fields, the skew-
symmetric part of the displacement gradient becomes non-zero. Under these circumstances
Q4X appears to be less stiff than standard Q4 elements, tending to effectively suppress the
formation of large areas of checkerboard material layout. To illustrate, Figure 7.5(a) depicts
the optimal topology of the MBB beam employing Q4 elements and a ramping strategy to
increase penalty parameter p linearly from 1 to 3 in 34 iterations, and held at p = 3 for a
further 16 iterations after which the solution is terminated. Figure 7.5(b) depicts the results
employing the same strategy, but this time employing Q4X elements. Clearly, the severity
of checkerboarding is significantly reduced compared to the results employing Q4 elements.

However, in the limit of mesh refinement only constant strains are experienced, and under
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(a) Q4 elements. (b) Q4X elements

Figure 7.5: Optimal topologies of the MBB beam using symmetry and employing (a) Q4
and (b) Q4X elements.

these circumstances (fine meshes) more checkerboarding is expected. Numerical experiments
have supported this conjecture. There is therefore no guarantee that Q4X elements will not
checkerboard, especially when fine meshes are employed. However, elements with drilling
degrees of freedom have been shown to be useful in topology optimization applications for
specific problems, e.g. see [146, 77, 147]. Q4X elements are also more accurate and more
stable than standard Q4 elements, at only a slight increase in numerical expense.

The local χ fields for Q8 and Q9 elements are distinctly different to those associated with the
Q4 and Q4X elements. The material distribution results in nonzero local strain variations
as shown in Figures 7.4(b) and (c) respectively.

The local χ fields for the Q8 and Q9 elements, depicted in Figure 7.4, are recognised as having
a significant contribution from higher order staining modes. Recently, it has been shown that
higher order deflection modes of quadratic elements can be softened by employing reduced
order integration schemes. In the next section, these reduced order integration schemes are
employed to compute effective material properties of checkerboards with the aim of reducing
the strain energy density associated with prescribed strains ε̄.

7.6.2 Effect of element selection and integration scheme on effec-
tive properties of a checkerboard

A patch of 4 elements, arranged in a checkerboard as depicted in Figure 7.3, is used to deter-
mine the effect of element formulation, interpolation and integration scheme on the effective
material properties computed using homogenization. In order to compare with results pre-
sented by Dı́az and Sigmund, their material properties are used in similar calculations for
Q4 and Q9 elements. Specifically, the weak material has constitutive tensor

E− = 0, (7.47)

and the strong material with constants

E+
1111 = E+

2222 = 1, E+
1122 = 0.3, E+

1212 = 0.35. (7.48)

The variable weights selected for evaluation (for the 5- and 8-point schemes) are based on
results presented in Chapter 4, wherein it was shown that employing a very small adjustable
weight W could result in numerical instabilities, and therefore the use of values W < 0.01 are
not recommended. Furthermore, in Chapter 4 settings of W0 = 0.1(8/3) and Wβ = 0.1(8/9)
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were suggested for improved stability and accuracy. It was also shown that a value of
Wβ = 40/49 results in a solution identical to employing a full 9-point integration scheme for
undistorted elements. Values selected for evaluation are therefore W0 = 0.01 and 8/30 and
Wβ = 0.01, 8/90 and 40/49.

Effective material properties for the evaluated elements employing the various integration
schemes and weights to solve (7.29) and then (7.28) are presented in Table 7.1.

Undistorted Q4 elements are exactly integrated using a 4 point Gauss quadrature, and all
other (higher order in this case) integration schemes yield the same result. The resulting
material constants are simply given by the average of the strong and weak material properties
since ε∗[χ(kl)] = 0 in (7.28).

A similar result is computed for the patch of Q4X elements, as expected, since Q4 and Q4X
elements result in the same χ fields. The result is that the homogenised material properties
of Q4X and Q4 are identical. Furthermore, the integration scheme employed has no effect
since local strains are all constant. Note however, that employing a 4-point scheme results
in a rank deficiency for Q4X elements.

Applying a reduced 4-point integration scheme in elemental calculations of Q8 elements is
known to result in one spurious straining mode. For an assembly of 2 or more elements,
this mode is largely non-communicable. However, as shown in, for example [17, 60, 140], the
mode becomes communicable under certain circumstances, such as when elements are soft-
supported (as may be the case in topology optimization applications), or in some dynamic
problems (in which Escher modes appear). In the case considered here, the manner in which
the two solid elements are connected in the patch (similar to a one-node hinge) also allows the
mode to become communicable. In other words, the mode is not prevented from propagating
between diagonal elements, since adjacent elements are empty.

Solution of the system of equations in (7.29) under these circumstances is obviously not
recommended, due to the rank deficiency of the global stiffness matrix. However, for com-
pleteness singularity problems were suppressed in order to compute ‘singular results’. Ap-
plying the 4-point scheme to the patch of Q8 elements and solving (7.29) and then (7.28)
results in a constitutive tensor with all non-zero entries equal. This constitutive matrix is
therefore rank deficient, and a strain of ε = {ε̄, ε̄, 0} results in zero stress and therefore zero
strain energy. This proves that application of the 4-point scheme in a topology optimization
environment employing quadratic elements is not recommended.

The 5- and 8-point integration schemes are further evaluated with the weights suggested by
Long and Groenwold [140]. The 5-point integration scheme has been shown, even at the
low value of W0 = 0.01, to suppress the spurious mode present when a 4-point scheme is
employed. This result is mirrored by the results presented in Table 7.1. Application of the
8-point scheme, naturally also suppresses these modes. As shown in [140], application of
the 8-point scheme with weight Wβ = 40/49 yields identical results to a 9-point scheme for
undistorted elements.

Identical results are computed when a patch of Q9, instead of Q8, elements are considered.
However, application of a 4-point integration scheme to compute the element stiffness matrix
of Q9 elements results in 3 spurious zero energy modes, two of which are communicable in an
assemblage of elements. As a result, even application of the 5-point scheme results in a rank
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deficient global stiffness matrix. Therefore, even though the computed results are similar
for Q8 and Q9 elements, Q9 elements can only safely be used with 8- or 9-point integration
schemes.

Finally, applying a full (9-point) integration scheme results in identical effective material
properties for Q8 and Q9 elements. Since a 9-point scheme represents a full integration
scheme for an undistorted quadratic element, the result is identical to solving the expres-
sions analytically. This suggests that there is very little or no advantage in including the
hierarchical bubble function, present in Q9 elements, in terms of checkerboarding of undis-
torted elements. Results for distorted elements may differ however.

7.6.3 Effect of integration scheme on strain energy density of
quadratic elements

Since it was shown in Section 7.6.2 that both Q4 and Q4X elements result in identical
effective material tensors independent of integration scheme, their results are not considered
in this section. Results for Q4 elements may be found in the paper of Dı́az and Sigmund
[14]. Furthermore, since Q8 and Q9 elements produce identical results, as shown in Table
7.1, only results for Q8 elements will be presented here. Finally, due to the dominance of
the SIMP material model in recent years, only results for SIMP will be focused upon in this
subsection. However, these results are equally valid for other material parameterizations
such as rank 2 materials.

The material parameterization for SIMP is extremely simple, with the equivalent material
tensor given by

ĒSIMP(ρ) = ρpE+, with p ≥ 1. (7.49)

The minimum compliance problems can therefore be written as

max
ρh∈XM

min
uh∈Kh

N
∑

e=1

1

2

∫

e

(ρe)pE+ε(uh) · ε(uh)dx− f(uh), (7.50)

with relevant space of density

XM =

{

ρ ∈ L∞(Ω) : 0 ≤ ρ ≤ 1,

∫

Ω

ρ dx ≤M

}

. (7.51)

For the SIMP problem, the strain energy density of a patch with average density ρ can
simply be written as

w∗

SIMP =
1

2
(ρ)pE+ε̄ · ε̄, (7.52)

for prescribed strain ε̄. It can easily be shown that the strain energy density can be written
in terms of principal strains as

w∗

SIMP

E+
1111ε

2
I

=
1

2
(ρ)p (1 + 2νη + η2

)

, (7.53)
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Table 7.1: Effective constitutive terms for different elements employing various integration schemes.
Integration Ē2211= Ē1211= Ē1222=

Element Scheme Weight Ē1111 Ē1122 Ē1112 Ē2222 Ē2212 Ē1212

Q4 4pt − 5.0000e-01 1.5000e-01 -7.6328e-17 5.0000e-01 -6.9389e-18 1.7500e-01
Q4 5pt W0 = 0.01 5.0000e-01 1.5000e-01 -1.1102e-16 5.0000e-01 -6.9389e-18 1.7500e-01
Q4 5pt W0 = 0.18

3
5.0000e-01 1.5000e-01 1.3032e-16 5.0000e-01 -2.6021e-18 1.7500e-01

Q4 8pt Wβ = 0.01 5.0000e-01 1.5000e-01 1.4658e-16 5.0000e-01 -4.5103e-17 1.7500e-01
Q4 8pt Wβ = 0.18

9
5.0000e-01 1.5000e-01 1.6617e-16 5.0000e-01 -1.2040e-18 1.7500e-01

Q4 8pt Wβ = 40
49

5.0000e-01 1.5000e-01 -1.3878e-17 5.0000e-01 0 1.7500e-01
Q4 9pt − 5.0000e-01 1.5000e-01 -1.9452e-16 5.0000e-01 2.0046e-17 1.7500e-01

Q4X 4pt∗ − 5.0000e-01 1.5000e-01 -4.8572e-17 5.0000e-01 3.4694e-17 1.7500e-01
Q4X 5pt W0 = 0.01 5.0000e-01 1.5000e-01 -2.7756e-17 5.0000e-01 -1.1796e-16 1.7500e-01
Q4X 5pt W0 = 0.18

3
5.0000e-01 1.5000e-01 7.6328e-17 5.0000e-01 9.7145e-17 1.7500e-01

Q4X 8pt Wβ = 0.01 5.0000e-01 1.5000e-01 3.1225e-17 5.0000e-01 4.1633e-17 1.7500e-01
Q4X 8pt Wβ = 0.18

9
5.0000e-01 1.5000e-01 1.0061e-16 5.0000e-01 2.7756e-17 1.7500e-01

Q4X 8pt Wβ = 40
49

5.0000e-01 1.5000e-01 -1.0408e-17 5.0000e-01 2.7756e-17 1.7500e-01
Q4X 9pt − 5.0000e-01 1.5000e-01 -1.0755e-16 5.0000e-01 -1.3878e-17 1.7500e-01
Q8 4pt∗ − 1.1375e-01 1.1375e-01 -9.1901e-16 1.1375e-01 -3.1130e-15 1.1375e-01
Q8 5pt W0 = 0.01 1.1413e-01 1.1391e-01 2.9730e-16 1.1413e-01 1.0847e-16 1.1386e-01
Q8 5pt W0 = 0.18

3
1.2428e-01 1.1814e-01 9.5590e-16 1.2428e-01 6.0057e-16 1.1682e-01

Q8 8pt Wβ = 0.01 1.1420e-01 1.1357e-01 -1.2468e-15 1.1420e-01 1.0146e-17 1.1376e-01
Q8 8pt Wβ = 0.18

9
1.1783e-01 1.1211e-01 8.5974e-16 1.1783e-01 6.7693e-17 1.1387e-01

Q8 8pt Wβ = 40
49

1.7184e-01 9.4066e-02 6.9568e-16 1.7184e-01 8.3630e-17 1.1582e-01
Q8 9pt − 1.7184e-01 9.4066e-02 -5.0362e-16 1.7184e-01 -1.2759e-16 1.1582e-01
Q9 4pt∗ − 1.1375e-01 1.1375e-01 2.9343e-17 1.1375e-01 -4.7436e-16 1.1375e-01
Q9 5pt∗ W0 = 0.01 1.1413e-01 1.1391e-01 -4.4465e-16 1.1413e-01 2.0281e-16 1.1386e-01
Q9 5pt∗ W0 = 0.18

3
1.2428e-01 1.1814e-01 1.9876e-13 1.2428e-01 7.1124e-14 1.1682e-01

Q9 8pt Wβ = 0.01 1.1420e-01 1.1357e-01 -1.6860e-15 1.1420e-01 1.4914e-15 1.1376e-01
Q9 8pt Wβ = 0.18

9
1.1783e-01 1.1211e-01 3.5281e-16 1.1783e-01 -8.8486e-17 1.1387e-01

Q9 8pt Wβ = 40
49

1.7184e-01 9.4066e-02 -4.1730e-16 1.7184e-01 6.1592e-18 1.1582e-01
Q9 9pt − 1.7184e-01 9.4066e-02 -6.1712e-16 1.7184e-01 1.2296e-16 1.1582e-01

∗ Singularity problems suppressed to perform the calulation. Use of this integration scheme is not recommended.
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Figure 7.6: Strain energy density of fully integrated Q8 elements.

where η is the principal strain ratio η = εII
εI

, with |εI | ≥ |εII |, the principal strains.

Comparing this result to expressions for the (analytically or fully integrated) strain energy
density of a patch of elements, given by

w∗

Q4

E+
1111ε

2
I

=
1

4

(

1 + 2νη + η2
)

, (7.54)

for a checkerboard patch of Q4 elements, and

w∗

Q9

E+
1111ε

2
I

=
1

4

[

(47 − 35ν − 35ν2 + 25ν3)

22(6 − 5ν)
+

(50 − 26ν − 70ν2 + 50ν3)

22(6 − 5ν)
η+

(47 − 35ν − 35ν2 + 25ν3)

22(6 − 5ν)
η2

]

,

(7.55)

for a patch consisting of Q9 elements, Dı́az and Sigmund were able to prove the propositions
in (7.40) to (7.43). Dı́az and Sigmund conject that if w∗

SIMP is less than the strain energy
density given by the equivalent patch of elements, checkerboarding is likely to occur.

The strain energy density given in (7.53) is now compared to numerically integrated coun-
terparts of equations (7.54) and (7.55) computed using reduced order integration schemes
and Q8 elements.

To illustrate, w∗

Q8(η), computed using Q8 elements with full (9-point) integration, is plotted
for unit E+

1111 and εI and for ν = 0.3 in Figure 7.6. To reiterate, since Q8 and Q9 elements
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Figure 7.7: Variation of p∗ for fully integrated Q8 elements.

result in identical effective material properties (see Table 7.1), the result of w∗

Q9 is identical
and given by (7.55), assuming the same integration scheme is employed. Also plotted in
Figure 7.6, is w∗

SIMP(η) computed using (7.53) for various values of penalty parameter p and
ρ = 1/2. Clearly, for values of 1 ≤ p < p∗1, w

∗

Q8(η) < w∗

SIMP(η), i.e. checkerboarding is
unlikely, and when p ≥ p∗2, w

∗

Q8(η) ≥ w∗

SIMP(η), i.e. checkerboarding is likely to occur (in
both cases, independently of η).

For values of p∗1 < p < p∗2, w
∗

Q8(η) could be such that w∗

Q8(η) < w∗

SIMP(η) or w∗

Q8(η) >
w∗

SIMP(η), depending on the strain being experienced. For example, if p = 3 in this example,
w∗

Q8(η) < w∗

SIMP(η) for −1 ≤ η / −0.53 and w∗

Q8(η) > w∗

SIMP(η) for −0.53 / η ≤ 1.

Values of p∗1 and p∗2 can similarly be computed for each Poisson’s ratio ν and plotted as shown
in Figure 7.7. Values of p can therefore be selected using this figure so as to minimize the
likelihood of checkerboarding. Since values of p as large as possible are desired (to penalize
intermediate densities), a value of p∗1 as large as possible is sought. If p∗1 cannot be altered,
the ‘next best’ would be to increase p∗2.

Figures 7.8 and 7.9 depict the effect of applying the 5-point integration scheme on strain
energy density, as a function of principal strain ratio η, for a patch of Q8 elements. The
plot is for a material with ν = 0.3, and as before, unit E+

1111 and εI . For clarity, only the
5-point scheme with weights W0 = 0.01 and W0 = 8/30 are depicted, together with the
results computed using the 4-point and 9-point schemes for reference.

Clearly, applying the 5-point scheme with W0 = 0.01 or 8/30 significantly reduces the strain
energy density associated with the considered straining modes. It can be shown that there
is a monotonic increase in strain energy density with an increase in W0. In fact, for weights
close the the maximum permitted 8/3, a higher strain energy density is estimated than the
9-point scheme.

Also shown in Figure 7.8 are the strain energy densities w∗

SIMP, calculated for different
values of p. If w∗

Q8(ε̄) > w∗

SIMP(ε̄), checkerboarding is likely to occur. Therefore, application
of reduced order integration schemes clearly reduces the likelihood of checkerboarding for
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Figure 7.8: Strain energy density of Q8 elements with 5-point integration scheme.

a given p. Alternatively, it allows for the use of larger values of p without increasing the
effective stiffness of the checkerboard patch of elements.

Finally, the minimum of w∗

SIMP computed using (7.53) occurs at η = −ν, in this case η =
−0.3. Increasing p simply decreases values of w∗

SIMP. However, computing the strain energy
density of a patch of Q8 elements employing the various integration schemes, affects not
only the value of w∗

Q8(η), but also shifts the turning point towards η = −1 as the integration
scheme becomes ‘softer’. Unfortunately, this means that the gap between p∗1 and p∗2 is
increased as will be shown in the next subsection.

For clarity, Figure 7.9 shows an enlargement of Figure 7.8, concentrating on the lower left
corner. As described earlier, applying a 4-point integration scheme (which is equivalent to
a 5-point scheme with W0 = 0), results in zero strain energy being experienced at η = −1,
corresponding to the rank deficiency in the constitutive matrix Ē. Figure 7.9 also highlights
the difference between the results employing the 4-point scheme and those using the 5-point
scheme with W0 = 0.01 and 8/30, which is not clear in Figure 7.8.

Figures 7.10 and 7.11 depict the results for the same problem employing the 8-point scheme.
Again, the results of the 4- and 9-point schemes are plotted together with results for w∗

SIMP

for various values of p. Employing the 8-point scheme with Wβ = 40/49 clearly produce
identical results to those employing the 9-point scheme as expected. Again, employing low
values of Wβ = 0.01 and 8/90 produce significantly lower values of strain energy density.
Once again, an enlargement of Figure 7.10 is depicted in Figure 7.11. Slightly higher values
of strain energy density are computed using the 8-point compared to the 5-point scheme
for low weights, such as 0.01. This is significant, especially since the 5-point scheme is not
recommended for Q9 elements.
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Figure 7.9: Zoom of strain energy density of Q8 elements with 5-point integration scheme.

7.6.4 Effect of integration scheme on penalty bounds p∗1 and p∗2

Based on the computation of strain energy density for a checkerboard patch of Q8 elements
compared to the expression for the SIMP material model in (7.53), limits of p can be deter-
mined for which w∗

Q8(ε̄) < w∗

SIMP(ε̄) (denoted p∗1(ν)) and w∗

Q8(ε̄) > w∗

SIMP(ε̄) (denoted p∗2(ν))
for each value of Poisson’s ratio ν, as depicted in Figure 7.7.

In Figure 7.12, the values of p∗1(ν) for Q8 elements employing the 5-point scheme are plotted,
normalised with respect to the fully integrated equivalent, (shown in Figure 7.6). Also plotted
as a reference are the values computed using 4- and 9-point integration schemes. The figure
shows that employing the 5-point scheme with W0 = 0.01 increases p∗1 significantly, almost
to the level of the 4-point scheme. At a Poisson’s ratio of ν = 0.3 (common in engineering
materials) an increase of approximately 10% is achieved employing this integration scheme.
A slightly less marked increase is achieved employing the 5-point scheme with W0 = 8/30.

Figure 7.13 depicts the results employing the 8-point scheme. In this case, the increase is
approximately 10% for both weights Wβ = 0.01 and Wβ = 8/90. Once again, as expected,
employing the 8-point scheme with a weight Wβ = 40/49 results that are identical results to
the results computed with the 9-point scheme.

Figures 7.14 and 7.15 depict the values of p∗2(ν) for a patch of Q8 elements employing 5-
and 8-point schemes, respectively. It was shown in Section 7.6.3, that for the 4-point scheme
as η → −1, w∗

Q8 → 0. This implies that p∗2 → ∞. The results for the 4-point scheme are
therefore not shown in Figures 7.14 and 7.15.

The scale of improvement for p∗2 is notably higher than that of p∗1, with improvements of
well over 300% for the 5-point scheme with W0 = 0.01 and around 300% for the 8-point
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Figure 7.10: Strain energy density of Q8 elements with 8-point integration scheme.

scheme with Wβ = 0.01. This results in a relatively wide range of values of p, for which
checkerboarding likelihood depends on strain conditions. However, since reduced order in-
tegration does not add to element numerical cost (in fact cost is reduced) and accuracy is
improved with no loss of stability, as shown in [140], it is recommend that our reduced order
integration schemes be implemented for topology optimization problems.

7.7 Conclusions

Based on the theory of Dı́az and Sigmund [14], the stiffness of checkerboard patches of
various elements, employing different integration schemes have been assessed. Standard
bilinear isoparametric 4-node elements and higher order 8- and 9-node elements as well as
4-node elements with in-plane rotational degrees of freedom are evaluated, employing full,
reduced and modified reduced order integration schemes. The combinations of element and
integration scheme which ‘soften’ the effective material tensor of a checkerboard patch of
elements, effectively reducing the likelihood of checkerboarding in a topology optimization
applications, are investigated.

Firstly, it is shown that both 4-node elements with drilling degrees of freedom (Q4X) and
without (Q4) result in identical effective material properties for a checkerboard patch of
elements. The additional degrees of freedom present in Q4X elements do not ‘soften’ the
patch since none of the 3 linearly independent test strains applied to compute the effective
material properties, activate the nodal in-plane rotations. It is however numerically demon-
strated that for realistic problems, where nodal rotations are non-zero, checkerboarding is
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Figure 7.11: Zoom of strain energy density of Q8 elements with 8-point integration scheme.

notably reduced. However, since in the limit of mesh refinement only constant strain states
are experienced, there is no guarantee that Q4X elements will unconditionally eliminate
checkerboarding.

Next it is shown that undistorted higher order 8-node (Q8) and 9-node (Q9) elements result
in identical effective material properties for the checkerboard patch of elements considered,
if similar integration schemes are employed. It is shown that if a full (9-point) integration
scheme is employed, both Q8 and Q9 elements result in effective material properties which
are identical to the analytical solution computed by Dı́az and Sigmund [14].

Q8 elements may be used with either 5-, 8- or 9-point integration schemes without the risk
of introducing elemental rank deficiencies. Q9 elements are shown to be stable when using
either 8- or 9-point schemes, with 4- and 5- point schemes resulting in communicable spurious
modes.

The most significant improvements in terms of reducing the strain energy density (of a
checkerboard patch) has been achieved by application of Q8 elements with a 5-point inte-
gration scheme with associated variable weight W0 = 0.01. Employing this combination
additionally increases the value of penalty which can be applied in the SIMP material pa-
rameterization without increasing the risk of checkerboarding. Specifically, p∗1, the threshold
at which checkerboarding is likely to occur independent of straining condition, is increased
approximately 10%, while p∗2 is increased over 300% for common engineering materials This
benefit is also cost-effective since employing the 5-point scheme simultaneously reduces com-
putational cost, and increases the accuracy of the finite element approximation.

It is therefore recommended that Q8 elements with a 5-point integration scheme be used,
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Figure 7.12: Effect of integration scheme setting on p∗1: 5-point scheme.

instead of Q9 elements with full integration, when higher order elements are employed in
SIMP topology optimization applications.
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Figure 7.13: Effect of integration scheme setting on p∗1: 8-point scheme.
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Figure 7.14: Effect of integration scheme setting on p∗2: 5-point scheme.
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Figure 7.15: Effect of integration scheme setting on p∗2: 8-point scheme.
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Chapter 8

Conclusion

The stated objectives of this work were to:

1. Develop new finite elements, or elemental procedures, which not only improve model
accuracy, robustness and/or efficiency, but can also be used in schemes which alle-
viate or eliminate the numerical instabilities, or improper modelling, associated with
spurious material layouts in topology optimization.

2. Develop procedures which exploit the salient features of the new finite elements, or
elemental procedures, in order to overcome or alleviate the numerical instabilities, or
modelling deficiencies, leading to spurious material layouts in topology optimization.

These two main objectives formed the basis of this two part thesis. In the first part, emphasis
is mainly concentrated on the development of planar finite elements and procedures. The
stability of planar elastic elements with drilling degrees of freedom (DOFs) are considered,
and piezoelectric finite elements with drilling DOFs are developed. Finally, reduced order
integration schemes are applied to quadratic (Q8 and Q9) elements in order to enhance
element accuracy.

In the second part of the thesis, the new finite elements, and elemental procedures, are
applied in a topology optimization environment. Firstly, elements with drilling DOFs are
exploited in the development of schemes to deal with problematic material layouts. The effect
of element formulation on optimal topologies of membrane, plate and shell problems is then
investigated. Finally it is shown how reduced order integration schemes soften checkerboard
patches of higher order elements, making checkerboard material layouts less likely in optimal
topologies.

In this final chapter, conclusions made during the course of the study, and evidence demon-
strating that the objectives of the study have been met, are presented. Each chapter contains
a presentation of specific scientific contributions made during the course of this study. As
such, each chapter is intended to represent a self-contained work, which can be read in isola-
tion of the remainder of the document. Therefore, the conclusions drawn from each chapter
will also be presented separately.

203
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8.1 PART I: Development of finite element technology

Effect of penalty parameter on elements with drilling DOFs
In Chapter 2, after a brief summary of historical developments in the formulation of elements
with in-plane rotations, a numerical investigation into the effect of a penalty parameter in
elements with drilling degrees of freedom is presented.

The parameter under investigation is usually denoted γ, and relates the in-plane translations
and rotations. Rather than simply reporting on the quantitative influence of the penalty
parameter γ on measures like displacement, rotation and stress, the skewness of the nonsym-
metric part of the stress tensor is directly assessed. Results are presented for both isotropic
and orthotropic constitutive relationships.

In general it is shown that, values smaller than γ = µ, with µ the shear modulus, are
desirable, even though the formulation is convergent for all values of γ. In implementing
elements with drilling degrees of freedom based on the procedure suggested by Hughes and
Brezzi [18], the skewness of the nonsymmetric part of the stress tensor, may directly be used
to quantitatively assess the validity of selected values of γ.

Development of planar four node piezoelectric elements with drilling DOFs
In Chapter 3 a number of variational formulations accounting for piezoelectricity and in-
plane rotations are presented. Two new functional families, namely M-type, which retains
the skew-symmetric part of the stress tensor, and K-Type, in which the skew part of stress
is eliminated, are introduced.

From the Hu-Washizu-like functionals (M- and K-type) irreducible formulations with only
‘kinematic’ independent variables, i.e. displacement and electric potential are developed. It
is also shown how ‘fully’ mixed formulations, with stress and electric flux density assumed,
are developed. Furthermore, ‘degenerate’ Hellinger-Reissner-like formulations with either
stress or electric flux density assumed, are also presented. It is also illustrated how the
family of functionals are related to one another.

The accuracy and robustness of these elements on a number of benchmark problems is demon-
strated. The addition of drilling degrees of freedom enriches the interpolated displacement
field, resulting in improved element performance. This is borne out by the improved accu-
racy and robustness of the irreducible elements with drilling DOFs over the standard bilinear
piezoelectric element.

The improved performance of the mixed elements with drilling degrees of freedom is generally
less marked when compared to existing mixed piezoelectric elements. In fact, it is difficult
to conclusively state that any one of the elements used in the study is better in terms of
accuracy than all the others, since none of the elements herein consistently outperforms all
the other elements on all reported accuracy measures.

The ‘fully mixed’ elements, however, are shown to be accurate and stable, even at extreme
element distortions. They also allow for improved modelling capabilities due to the additional
rotational degree of freedom, e.g. compatibility with elastic elements with drilling degrees
of freedom is ensured.

 
 
 



www.manaraa.com

8.2. PART II: APPLICATION OF F.E. TO TOPOLOGY OPTIMIZATION 205

Modified reduced order quadratures for quadratic membrane elements
The use of modified reduced order quadrature integration rules in the evaluation of elemental
matrices was the focus of Chapter 4. Modified reduced order quadrature rules as alternative
numerical integration schemes for Q8 serendipity and Q9 Lagrange membrane finite elements
are offered. For these elements, practitioners often either employ full integration, using order
3 Gauss rules, or reduced integration using an order 2 Gauss rule. However, full integration
usually results in excessively stiff behavior while order 2 Gauss rules result in the introduction
of spurious modes on the element level. Even though the spurious mode associated with the
Q8 element is non-communicable, it remains undesirable, and may influence results in a
number of situations of practical importance, e.g. vibration problems.

The 5 and 8 point schemes, proposed for respectively Q8 and Q9 elements, eliminate spurious
zero energy modes, while element accuracy is enhanced as compared to order 3 Gauss rules,
through the introduction of soft higher order deformation modes.

It is shown that for the Q8 element, both the 5 and 8 point rules can be used for integrating
the element stiffness matrix. In each case the spurious mode is eliminated. Since the nu-
merical cost of the 8 point scheme is higher than the 5 point scheme, with no other obvious
benefits, it is recommended that Q8 elements be integrated using the 5 point rule. For the
Q9 element, the 5 point rule is inadequate since only one of the three spurious modes is
eliminated. It is therefore recommended that the 8 point rule be employed for elemental
calculation of Q9 elements. Appropriate values for the variable weights which appear in the
integration schemes are also suggested, so as to balance element accuracy and stability.

8.2 PART II: Application of finite element develop-

ments to topology optimization

Exploiting drilling DOFs to deal with checkerboarding, one-node hinges and di-
agonal members
The aim of Chapter 5 was to demonstrate that membrane finite elements with drilling DOFs
can be exploited in schemes to treat problematic local material layouts, such as checkerboard-
ing and one-node connected hinges. It is firstly demonstrated via numerical experimentation,
that simply employing these elements in topology optimization problems, results in a sig-
nificant reduction in the amount of checkerboarding in optimal topologies. The theoretical
merits of this strategy are detailed in Chapter 7. In addition, drilling DOFs present a natural
way of detecting and/or penalizing one-node connected hinges. It is therefore also shown
how drilling DOFs can be used to improve on the numerical modelling of one-node hinges
and diagonal structural members.

Two new schemes to deal with one-node hinges and diagonal members, exploiting drilling
DOFs are suggested. The first scheme is based on NoHinge, a scheme originally proposed by
Poulsen [15]. The modified scheme however, uses the rotations computed at internal nodes
to distinguish between a material layout which is behaving as a hinge (in rotation) and a
diagonal structural member subjected to only axial loads. This scheme however, requires
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a somewhat numerically expensive constraint sensitivity computation. A second scheme
in which a one-node hinge is modelled, such that the response is similar to a reasonable
interpretation of the material layout, is also presented. A function which indicates whether
or not an element takes part in a layout with unsuitable numerical representation, such as a
one-node hinge, is developed. If such an element is detected, it is replaced by an equivalent
beam model for improved modelling accuracy. Since the process is solely determined by
the material layout, it is completely reversible. Using this new method, it is demonstrated
that it is relatively easy to stiffen one-node hinges in compliant mechanism design, thereby
penalizing their existence, and that this stiffening does not lead to checkerboarding.

This second scheme in particular seems a promising alternative to traditional methods which
seek to simply eliminate these problematic material layouts altogether, and is therefore
further applied in the design of a practical mirror scanning device. Firstly, standard filtering
strategies are employed in the topology optimization of a mirror scanning device using three
different problem formulations. The first seeks to simply maximize the output rotation, while
the other two maximize some measure of stiffness subject to a required output rotation
being maintained. Each of the resulting optimal topologies contain a number one-node
hinges. Upon application of the newly proposed scheme, the formation of one-node hinges
are however, effectively prevented.

Effect of finite element formulation on optimal topologies of generally curved
shells structures
Chapter 6 presents an investigation into the effect of finite element formulation and elemental
settings on optimal topologies of membrane, plate and shell minimum compliance problems.
It is shown that for given optimization algorithm settings, the optimal topology which results
is a function of the element type.

For membrane problems, it is demonstrated that both standard Q4 elements and element
with drilling DOFs results in identical optimal topologies. Referring here to the stability
of elements with drilling DOFs, studied in Chapter 2: Optimal topologies employing ele-
ments with drilling DOFs are shown to be largely insensitive to the value of the adjustable
parameter γ over a large range of values.

Furthermore, the effect of the plate component of flat shell elements, is investigated. Re-
sults for Discrete Kirchhoff Quadrilateral (DKQ) elements, and two Mindlin-Reissner based
elements, one employing Selective Reduced Integration (SRI) on transverse shear terms and
the other employing an Assumed Natural Strain (ANS) formulation, are investigated and
compared. The plate examples presented confirmed that, since the DKQ element is shear
rigid, optimal topologies are not sensitive to plate thickness. Elements employing the ANS
interpolations are shown to be robust reliable. The ANS elements consistently recovered
thin plate results similar to the DKQ results. Mindlin-Reissner elements with SRI on trans-
verse shear terms are shown to be ‘softer’ in transverse shear than the ANS Mindlin-Reissner
based elements and are therefore more sensitive to plate thickness. However, the SRI element
possesses a spurious communicable mode which occasionally renders this element unstable.
A plate example is introduced which exemplifies the problem.

Finally, the effects of parameters related to drilling DOFs of shell problems are studied. It
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is shown that optimal topologies computed with elements with drilling degrees of freedom
based on sound mathematical theory are insensitive to the penalty parameter over a wide
range. On the other hand, elements with an ad hoc treatment of drilling degrees of freedom
are found to be far more sensitive to the adjustable parameter. This sensitivity to the
adjustable parameter is furthermore shown to be problem dependent. This dependency is
illustrated on a newly introduced benchmark problem in the form of a pretwisted beam.

Effect of reduced order integration schemes and elements with drilling DOFs on
checkerboarding
The application of modified reduced order quadratures applied to quadratic membrane ele-
ments in a topology optimization environment, was the focus of Chapter 7.

Various elements, each employing different integration schemes, are assessed in term of the
stiffness of a checkerboard patch of elements. The evaluation makes use of 4-node ele-
ments (with and without drilling degrees of freedom) as well as 8- and 9-node isoparametric
elements, employing full and modified reduced order integration schemes. In particular,
combinations of element and integration scheme which ‘soften’ the effective material tensor
of a checkerboard patch of elements, (effectively reducing the likelihood of checkerboarding)
are identified.

Firstly, it is shown that both 4-node elements with and without drilling degrees of freedom
result in identical effective material properties for a checkerboard patch of elements. Since
the additional straining modes associated with the drilling DOFs are not activated by the
3 linearly independent test strains applied to compute the effective material properties,
elements with drilling DOFs do not affect the stiffness of a checkerboard patch. It is however
numerically demonstrated that for realistic problems where nodal rotations are non-zero,
checkerboarding is somewhat reduced. However, since in the limit of mesh refinement only
constant strain states are experienced, there is no guarantee that elements with drilling
DOFs will eliminate checkerboarding altogether.

Next it is shown that checkerboard layouts comprising higher order 8-node (Q8) and 9-
node (Q9) elements employing modified reduced order integration schemes are significantly
softened. The most significant improvements, in terms of softening, are achieved using
the 5-point scheme in conjunction with Q8 elements. Employing this combination signifi-
cantly reduces strain energy density associated with a checkerboard patch under prescribed
strain. This benefit is also numerically cost-effective since employing the 5-point scheme
simultaneously reduces computational cost, and increases the accuracy of the finite element
approximation.

8.3 Suggested future work

Although the main objectives of the study have been successfully accomplished, the research
topics have not been exhaustively addressed. For example, many of the (planar) finite
element developments presented in this study could be extended to the more general three-
dimensional case: The variational formulations presented in Chapter 3 are valid for planar
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two-dimensional and general three-dimensional finite element development. Solid three-
dimensional elastostatic elements with rotational degrees of freedom have previously been
implemented by for example Choi et al. [148]. It should therefore also be possible to develop
solid equivalents of the planar piezoelectric elements with rotational degrees of freedom
presented in Chapter 3. Furthermore, in theory, it is possible to develop modified reduced
order integration schemes, equivalent to those presented in Chapter 4 and to apply them in
the calculation of solid three-dimensional finite elements to enhance element accuracy and
reduce computational cost.

Naturally the two aforementioned solid finite element developments would also allow the
schemes and theory presented in Chapters 5 and 7 to be extended to the three dimensional
case if so desired.

Furthermore, in Chapter 5, two schemes exploiting elements with drilling degrees of freedom
were presented. Although acceptable results were achieved, a more elegant beam representa-
tion of a one-node connected hinge (and a diagonal member) for the scheme denoted Scheme
II in Section 5.5.2 would be helpful in improving the accuracy of the method.

Finally, the application of topology optimization in the synthesis of plate and shell compliant
mechanisms for micropositioning problems could be attempted. A simple piezoelectric shell
element has already been implemented, and its application in topology optimization problems
awaits attention.
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Appendix A

A brief introduction to topology
optimization

This appendix presents a very brief introduction to topology optimization as a material
distribution problem. This brief review stems mainly from the review papers of Eschenauer
and Olhoff [149], Frecker [103] and the book of Bendsøe and Sigmund [4]. For a more detailed
review, the interested reader is therefore referred to these works and their references. This
approach is characterised by the constitutive tensor of a material being parameterized within
a predefined design domain Ω in order to determine the material domain Ωmat, such that a
given objective function is optimized.

Two of the most popular material models which parameterise the constitutive tensor are the
homogenization and the SIMP (Simple Isotropic Material with Penalization) methods. Of
course, a number of alternative approaches have been proposed. For example [98, 150, 151].

The SIMP material model has become very popular in recent times. The SIMP (Simple
Isotropic Material with Penalization) was originally independently proposed by Bendsøe
[109] and Zhou and Rozvany [110].

The SIMP material model modifies the elasticity tensor by simply premultiplying by a density
0 ≤ ρ ≤ 1, raised to a power p, with p > 1:

Eijkl = ρ(x)pE0
ijkl, (A.1)

where E0
ijkl is the elasticity tensor of the solid base material. The volume, on the other hand,

is linearly dependant on ρ:

v(ρ) =

∫

Ω

ρ(x)dV. (A.2)

The penalty power makes intermediate densities uneconomical, since the stiffness of regions
with intermediate densities are significantly reduced, while volume is contributed to linearly.

If p = 1 in A.1, the problem is converted to one where the energy depends linearly on ρ. In
[13], it is noted that this linear problem provides the “most relaxed” problem and provides
a useful bound on the maximum structural efficiency. An example of this type of problem
is the variable thickness sheet problem.

223

 
 
 



www.manaraa.com

224 APPENDIX A. A BRIEF INTRODUCTION TO TOPOLOGY OPTIMIZATION

Although the SIMP model is often referred to as an artificial or fictitious model since it was
argued that intermediate densities could not be physically interpreted (as they can in the
homogenization method). However, it was shown in [152] that the SIMP model can indeed
be considered a realistic material model if p satisfies:

p ≥ max

{

2

1 − ν0
,

4

1 + ν0

}

in 2-D, (A.3)

p ≥ max

{

15(1 − ν0)

7 − 5ν0
,

3(1 − ν0)

2(1 − 2ν0)

}

in 3-D. (A.4)

That is to say, materials constructed from composites (materials with microstructure) which
satisfy the Hashin-Shtrikman bounds. The Hashin-Shtrikman bounds for two-phase mate-
rials impose limits on materials properties achievable by constructing materials with mi-
crostructure from two linear elastic materials.

The simplicity and ease of implementation of the SIMP material model has seen topology
optimization being adopted by a significant number of different elasticity problems and even
different fields and problems, including : vibration and dynamics [104, 153, 154], buckling
[155], flow [156], Micro Electro Mechanical Systems (MEMS) and multiphysics problems
[106, 138], and even wave propagation problems [157].

A typical material distribution topology optimization problem can be stated as: Find the
subdomain Ωmat with a limited volume (v̄) in Ω which minimizes a given objective function f
(for example compliance). In order to solve the problem as a material distribution problem,
a density function ρ is introduced which is 1 in Ωmat and 0 elsewhere. Mathematically, this
problem can be written as:

min
ρ
f(ρ)

subject to : v(ρ) =

∫

Ω

ρ dV ≤ v̄

: ρ(x) = 0 or 1, ∀x ∈ Ω

: Physical laws

(A.5)

These problems are mostly solved using the finite element method. The discrete form of the
problem can therefore be written as:

min
ρ
f(ρ)

subject to : v(ρ) =
1

vΩ

Nel
∑

i=1

ρivi ≤ v∗

: ρi = 0 or 1, ∀i = 1, 2, . . . , Nel

: Physical laws

(A.6)

where v∗ is an upper bound on the permissible volume fraction and Nel is the number of
elements in the finite element mesh.

Of course numerous other methods to solve topology optimization problems exist. Examples
include:
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• Evolutionary methods which are related to fully stressed design methods and typically
involve the iterative addition of elements in regions where they are predicted to be
effective and removal from ineffective areas. Typically sensitivity information is not
required or used in these methods. Although these methods are usually relatively
easy to implement, Eschenauer and Olhoff [149] warn that evolutionary structural
optimization-type methods are heuristic and have been shown to fail for even simple
problems [158].

• Employing topological derivatives and bubble methods extends the use of boundary
variation shape optimization techniques to topology optimization. Principally, the
sensitivity to the addition of an infinitesimally small hole (a change in topology) at
a certain point in the design domain is estimated. The topological derivative is used
where necessary to alter the topology, while standard shape optimization techniques
are used to manipulate the interior and exterior boundary shapes.

Level set methods have also become quite popular of late. Essentially, as explained by
Bendsøe and Sigmund [4], the contours of a parameterized family of level-set functions
are used to define and alter the boundaries of a structure.

Although these methods are theoretically sound, they are rather complex and are dif-
ficult to implement. Furthermore, although they have been demonstrated on problems
such as the minimum compliance problem, they are difficult to extend to practical
problems such as compliant mechanism design.

• Since discrete (0-1) solutions are ultimately sought from the topology optimization
routine, it seems attractive to tackle the problem using discrete variables. Easily
implemented gradient-free optimization algorithms such as Genetic Algorithms (GA’s)
and Particle Swarm Optimization Algorithms (PSOA’s) have previously been applied
to problems in topology optimization. However, these methods have had little success
since, due to the large scale of the problems, a restrictively large number of (relatively
numerically expensive) function evaluations are required.

Once again, a more detailed survey of these methods can be found in for example [149, 4].

A.1 Implementional issues

There are several known implementational issues which need to be dealt with appropriately if
topology optimization procedures are to yield sensible results. These issues include: existence
of solution (mesh dependency), checkerboarding, one-node connected hinges, non-uniqueness,
and local minima. In this section, some of the work that has been published in open literature
to deal with these issues, will be highlighted.

A.1.1 Mesh dependency

Problem (A.5) is well know to lack solution in general. A somewhat simplified explanation
for this is that for a given design, with known volume, allowing the addition of new holes
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(without increasing the volume) generally increases the efficiency of the allowable optimal
design. More specifically, the set of feasible designs is not closed. This nonexistence problem
(mesh dependence in the discrete case (A.6)) can be overcome by either relaxation or by
restriction of the design domain.

Problem relaxation involves expanding the set of permissible designs to achieve existence.
Bendsøe and Kikuchi [107] famously relaxed the problem by permitting composite mi-
crostructure using a homogenization method. The homogenization method describes global
behaviour in terms of a microscopic base cell. Using this method, each elements effective
density is allowed to vary such that 0 ≤ ρi ≤ 1, ∀i = 1, 2, . . . Nel, based on the parameteriza-
tion of the base cell. Using this procedure however, can result in large areas of intermediate
density which can be physically interpreted, but are difficult to manufacture.

Methods do exist to explicitly penalize intermediate densities, e.g. see [13, 159]. The problem
with this explicit penalization of intermediate densities is however, that one is essentially
reverting back to the problem in (A.6) which lacks solution!

More detail on topology optimization using homogenization methods can be found in Section
7.5.1. The detail of this method will therefore not be repeated here since the focus of this
study is on the SIMP method.

The other method to overcome the non-existence problem is to restrict the set of admissible
designs. Restriction methods involve decreasing the size of the set of feasible designs. In
doing so, the set of all possible designs is sufficiently closed.

For detailed reviews of restriction methods, the reader is referred to [4, 13]. Since many of
these methods also have the effect of reducing checkerboarding, some details of methods to
deal with the mesh dependency problem will be presented here.

Perimeter control

The basic idea of this method is to (as the name suggests) restrict the perimeter of the solid
domain Ωmat. Roughly speaking, the perimeter is the sum of the perimeters of all the holes
and the perimeter of boundary. Importantly, existence to topology optimization problems
with a restriction on the perimeter was proven by Ambrosio and Buttazzo [160].

Haber et al. developed the first numerical implementation of this method. They impose a
constraint on the total variation, which is in fact the perimeter of the solid domain if ρ = 1
in Ωmat and ρ = 0 elsewhere. The discrete form of the total variation is:

P =
K
∑

k=1

lk

(

√

< ρ >2
k +ε2 − ε

)

, (A.7)

where < ρ >k is the jump in material density over element interface k of length lk. K ≈ 2Nel
is the number of element interfaces and ε is a small number used to produce a differential
function in place of the absolute value. Other workers who have made contributions are
Duysinx [161] for continuous variables and Beckers [162] who worked with discrete variables.
This method results in the inclusion of only one additional constraint which can easily be
accommodated by general purpose optimizers such as MMA.
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A reported drawback of this method is that that perimeter constraint is relatively difficult to
approximate, resulting in fluctuations in the design variables. This is reported to be related
to the choice of asymptotes of MMA [4]. These implementational issues were alleviated by
an inner loop procedure for the relatively inexpensive perimeter approximation by Duysinx
[161]. Furthermore, the choice of the actual bounding value is not easily physically justifiable.

Global gradient constraint

Bendsøe [139] proved existence of solution when including this bound in topology optimiza-
tion problems. The global constraint simply involves imposing a bound on the norm of the
ρ function in the Sobolov space H1(Ω),

||ρ||H1 =

(
∫

Omega

(ρ2 + |∇ρ|2dV )

)1/2

≤M. (A.8)

This method also only involves one additional constraint function, however Bendsøe and
Sigmund [4] report that implementation of A.8 also involves some experimentation with a
range of values for bound M to achieve acceptable results.

Local gradient constraint

Petersson and Sigmund [163] proved existence of solution for, as well as numerically imple-
mented, a scheme introducing local gradient constraints. Point-wise bounds on the spacial
derivatives of function ρ are imposed:

| ∂ρ
∂xi

| ≤ G, i = 1, 2, 3 (in three dimensions). (A.9)

This scheme (which essentially constrains the L∞ norm of the gradient of ρ) has the ad-
vantage that the gradient constraint provides a well defined length scale. That is to say,
the transition from solid, to void, back to solid requires a distance of at least 2/G. How-
ever, implementation of this scheme results in (up to) 2Nel additional constraints for the
optimization problem, making large scale implementation difficult.

MOLE method

Recently a scheme named ‘MOLE’ (MOnoticity based minimum LEngth scale) has been
proposed by Poulsen [164]. In essence, the idea is to pass a circular filter over the design
domain and measure the monotonicity of the density function (horizontally, vertically and
at +/- 45◦). If a non-monotonic density distribution is detected at a smaller length scale
than desired, a constraint function becomes non-zero. A permissible tolerance is placed on
this function, resulting in only one additional constraint being added to the optimization
problem.
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Filtering of elemental densities

In a discrete implementation, this scheme modifies each elements density as some weighted
sum of the surrounding elements within a certain distance [4]. Features larger than the filter
size are implicitly penalised, since any non-uniformities within the filter area will result in a
‘grey’ element which is uneconomical in the SIMP model.

Implementation requires sensitivities of each element to take into account the mutual energy
of elements within the filter radius. Therefore, although no additional constraints are added
to the optimization problem, but bookkeeping in the computation of sensitivities may be
somewhat involved.

Filtering sensitivities

A method which has been widely used by numerous authors is to filter the sensitivity infor-
mation of the optimization problem. Although the method is purely heuristic, it is extremely
efficient and has been shown to provide very good results for a wide range of problems, for
examples see [4], with very little additional computational expense. Furthermore no addi-
tional constraints are added to the optimization problem, and therefore standard optimality
criteria methods can be used.

The filter was originally proposed by Sigmund [100, 165] and not only does this scheme
impose a sensible length scale on the problem but also eliminates checkerboarding. The
scheme works by modifying the sensitivities as follows:

∂̂f

∂ρk

= (ρk)
−1 1
∑Nel

i=1 Ĥi

Nel
∑

i=1

Ĥiρi
∂f

∂ρi

, (A.10)

where a linear convolution operator Ĥi can be written as

Ĥi = rmin − dist(k, i), {i ∈ Nel|dist(k, i) ≤ rmin}, k = 1, 2, . . . , Nel, (A.11)

and dist(k, i) is the distance between the centroid of elements k and i, and Ĥi is zero outside
the filter area.

A.1.2 Checkerboarding, one-node connected hinges

The checkerboarding phenomena is described in detail in Chapter 7, and therefore only a
condensed treatment will be presented here. The checkerboarding problem is characterised
by material distributions in “optimal topologies” being distributed in alternating solid and
void elements. Checkerboarding is largely as a result of poor numerical modelling of this
spurious material distribution, as shown by Dı́az and Sigmund [14] and Jog and Haber [102].
In essence, the numerical behaviour of this material distribution is over-stiff.

The one-node connected hinge is characterised by four elements surrounding a node, where
two diagonally opposite elements are solid and the other two are void. Although it is reported
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that the mesh-independency sensitivity filtering scheme also eliminates checkerboarding, one-
node connected hinges are still possible, and are in fact somewhat common when applied
in the design of compliant mechanisms. The reason is that in compliant mechanism design,
solid state hinges are employed to achieve the required motion and the numerical model of a
on-node hinge employing standard Q4 elements is ideal (if unrealistic and inaccurate) since
it offers zero resistance to bending.

Methods to overcome the problems of checkerboarding or one-node hinges (or both) are
numerous, and therefore only selected popular methods with be presented here.

Higher order elements

It was shown by Dı́az and Sigmund [14] and by Jog and Haber [102] that checkerboarding is
to a large extent eliminated when higher order (Q8 or Q9 planar) elements are employed with
the homogenization material model. However, as was shown in Chapter 7, checkerboarding
is only prevented in the SIMP model for a limited range of values for the penalty power
p. A significant drawback is that higher order elements are significantly more numerically
expensive than standard elements.

Patches

An alternative is to eliminate checkerboarding in a patch of elements. Patches are comprised
of four regular elements with a common node in the centre of the patch. The complete mesh
is therefore made up of Px ×Py patches or 2Px × 2Py elements. Each patch of four elements
can be viewed as a single “super-element”.

Four orthogonal basis functions are defined for the patch, similar to those described in
Section 5.5.2, one of which defines a pure checkerboard pattern. The ρ function is then
restricted to lie within a reduced, checkerboard-free space. This is achieved by, for each
patch, modifying the updated design variables by removing the component associated with
the pure checkerboard basis function [4].

Alternatively wavelet methods can be employed to directly work in a space without checker-
boarding [98, 151]. It was shown that this method can be used to prevent checkerboarding
as well as to obtain some geometry control.

Filters

The scheme employed to impose mesh-independency, introduced by Sigmund [100] also effi-
ciently alleviates the checkerboarding problem.

NoHinge

Poulsen [15] developed a simple scheme to avoid the formation of one-node connected hinges
and checkerboard patterns. This scheme results in a single additional constraint based on a
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measure of non-monotonicity of density around each interior node in the mesh. This method
is the basis of the new scheme developed in Section 5.5.2.

Other Methods

Most of the restriction methods described in the previous section also alleviate the effects of
checkerboarding.

A.1.3 Other complications

Other common complications in topology optimization problems are multiple (local) optima
and non-uniqueness. If one observes the many different optimal solutions which have been
published for, for example the MBB beam problem, it is clear that there are many local
optima present in these problems. This is due to the fact that most topology optimiza-
tion problems are non-convex. A popular method to alleviate non-convexity is the use of
continuation methods, in which problems are gradually changed from (artificial) convex or
nearly convex problems to the original non-convex problem. An example would be raising
the penalty exponent p from 1 to higher values gradually, or gradually raising the value of
filter radius until the desired value is reached.

Problems with multiple optimal solutions (with the same objective value) are termed non-
unique. An example commonly cited is that of a structure under uniaxial tension, in which
only the cross-sectional area is of importance and not the topology. The only sensible way
to deal with this problem is to impose manufacturing preference constraints.

A.2 Compliant mechanism design

Since the ultimate application of the scheme developed in this investigation, is a piezoelec-
trically driven mirror scanning device designed using topology optimization, a brief review
of previous work in the field is appropriate.

This review is not meant to be an exhaustive review, but is simply meant to give some
background to problems previously considered in this field. Again, for a more comprehensive
review the reader is referred to the book of Bendsøe and Sigmund [4] and to the review article
by Frecker [103].

Compliant mechanisms achieve their mobility via the solid-state flexibility of different regions
(components) within a single connected structure1. The fact that they are solid-state makes
their use especially attractive when piezoelectric actuators are used. Piezoelectric actuators
are capable of relatively small strokes (usually in the order of µm), which can easily be lost
to any play in the system.

Original works in the field are credited to Ananthasuresh et al. [166] and Sigmund [100].
Since then, numerous works have appeared, e.g. see [101, 138]. Mechanisms able to gen-

1Of course the mechanism itself can include multiple parts e.g. actuation mechanism connected to a
mechanical amplifier.
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erate specific prescribed paths have been developed by (for example Pedersen et al. [167].
Optimization of mechanisms for dynamic response has been considered by for example Min
and Kikuchi [168]. In most of these works, the output load is modelled using a spring with
specific stiffness against which the mechanism works.

In [169], instead of using a spring for the output to work against, various alternative func-
tion specifications are investigated. Examples include, mechanical advantage, geometrical
advantage and work ratio.

Topology optimization of smart structures is now specifically considered, especially those
employing piezoelectric actuation. Notably, far less attention has been paid to other smart
materials, such as shape memory alloys [170].

Canfield and Frecker [171] used a ground structure approach to design mechanical ampli-
fiers for piezoelectric stack actuators by maximizing geometrical advantage or maximizing
mechanical efficiency. The ground structure approach results in relatively sparse structures
which are not easily manufacturable.

In Silva and Nishiwaki [172] a micromanipulator is designed using the homogenization topol-
ogy optimization method. This multi-flexible structure requires various prescribed output
displacements at different points in the domain for various excitations due to piezoelectric
actuators.

Silva el al. [173] also used the homogenization method in the design of piezoelectric com-
posite material microstructures. They maximize given performance measures by designing a
material microstructure with prescribed material properties. Sigmund and Torqato [174] em-
ployed a similar procedure to design and manufacture piezoelectric material microstructures,
except that the SIMP method is employed.

In Li et al. [175], the optimal shape and location of piezoelectric materials within the (opti-
mal) compliant mechanism were generated. The placement of the piezoelectric material was
performed in an outer loop, optimized with a G.A. and the compliant mechanism optimiza-
tion carried out (for fixed location) in an inner loop.

Generally, mechanisms obtained using linear modelling in the topology optimization infras-
tructure do not behave optimally when subjected to large input/output displacements. For
these applications geometrically non-linear modelling is required to generate optimal com-
pliant mechanisms which produce the required motion. This problem was considered by for
example Bruns et al. [137] and Pedersen et al. [167]. Non-linear modelling is not neces-
sary for our applications driven by a piezoelectric actuator since free strains in the stacks
employed are typically in the order of 0.1−0.2%.

Finally, topology optimization of mechanical amplifiers subjected to dynamic motion was
considered by [176].
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Appendix B

Additional plate and shell results

In order to maintain the conciseness of Chapter 6, only the most important and immediately
relevant results were presented within the chapter itself. In this appendix supplemental
results are presented which corroborate the evidence and support the conclusions drawn
during the course of the investigation. The additional results that are referred to, but not
explicitly given in Chapter 6, are therefore presented herein.

B.1 Additional membrane results

Firstly, the supplemental membrane results are given. For details of the considered problem,
the reader is referred to Section 6.5.1.

B.1.1 MBB beam

The geometry, material properties, restraints and loading are all depicted in Figure 6.6.
Although symmetry is used to model the structure, the complete topology is reported. In
total 2700 square elements are used, 90 elements along the length of the finite element
model, L/2 and 30 elements in the height h. Of course, since only membrane components
are evaluated, only the single layer material model is tested. The available volume fraction
is half of the design domain.

Figure B.1 depicts the convergence histories for the topologies shown in Figure 6.8. In order
to stabilize the convergence, the penalty exponent is stepped from 1 to 3 as shown on the
convergence history plots. Also, the objective is normalized with respect to the starting
value of compliance in order to improve the problem scaling.
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(a) Q4 element. (same for all
α)
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(b) Q4γ element, α = 0.
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(c) Q4γ element, α = 10−6.
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(d) Q4γ element, α = 10−4.
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(e) Q4γ element, α = 10−2.
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(f) Q4γ element, α = 100.
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(g) Q4γ element, α = 102.

Figure B.1: Convergence histories for MBB beam for various values of α.
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B.2 Additional plate results

In this section, supplemental plate results are detailed. For more information about the
considered problems, see Section 6.5.3 herein.

B.2.1 Simply supported square plate with centre point load

The geometry and constraints for the first plate problem are depicted in Figure 6.9(a). The
problem consists of a square plate which is simply supported, and subjected to a unit point
load applied to the center of the plate. Three material models are analyzed, namely single
layer, ribbed and honeycomb material models.

The results for this problem are depicted in Figures B.2 to B.7. Figures B.2 and B.3 depict
respectively the optimal topologies and convergence histories for the thin and thick single
layer models. Figures B.4 and B.5 represent the optimal topologies for the thin and thick
ribbed material models, with corresponding convergence histories. The results for the thin
and thick honeycomb material models are depicted in Figures B.6 and B.7, respectively.

The tables accompanying each figure, tabulate the difference in compliance between the
optimal topologies, analyzed using the three plate elements utilized in this study. The
values represent the percentage difference between the compliance of the optimal topology
computed with a given element, and the compliance calculated using the remaining two
elements. Of course, there is no difference between the compliance of the optimal topology
calculated with any element and itself, accounting for the zero terms on the diagonal of each
table.

Single layer material model

Figure B.2 illustrates that similar topologies are computed using each of the different ele-
ments when considering the thin simply supported plate, with single layer material model.
Table B.1, further shows that the solutions obtained from the two Mindlin-Reissner elements
(in particular the ANS element) are marginally better than the result obtained using the
DKQ element. A possible explanation for the slight improvement on the DKQ results, is
that the regions of intermediate density (which contribute little to the compliance) are less
pronounced in the two Mindlin-Reissner elements. The correctness of these results may be
confirmed when compared to previously published results for similar problems [3, 115, 4].

Figure B.3 contains the results for the thick single layer problem. In this case the topology
obtained using the DKQ element differs from the topologies obtained using the two Mindlin-
Reissner elements. Since the DKQ element is shear rigid, the thick optimal topology is
identical to the thin result as expected. Table B.2 shows, the compliance of the structure
generated using DKQ elements has approximately 18% higher compliance (lower stiffness)
than the topology computed with ANS elements, when both are modelled using ANS ele-
ments. The DKQ result has a 24% higher compliance than the result obtained with SRI
elements, when both are analysed using SRI elements. Although the 18% and 24% differ-
ences cannot directly be compared since the percentage differences are calculated relative
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Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 -0.4871 -0.0641
Analysed with ANS 0.6021 0.0000 0.2734
Analysed with SRI 0.7677 -0.1193 0.0000

Constraint value 5.5924e-05 -4.4603e-05 -6.8271e-05

Table B.1: Percentage difference: Simply supported square plate subjected to center point
load, single layer model, t = 0.01.

(a) DKQ. (b) ANS. (c) SRI.

0 20 40 60 80 100
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

N
or

m
al

iz
ed

 fu
nc

tio
n 

va
lu

e

Iteration number
0 20 40 60 80 100

0

1

2

3

4

P
en

al
ty

 p
ar

am
et

er

(d) DKQ.
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(e) ANS.

0 20 40 60 80 100
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

N
or

m
al

iz
ed

 fu
nc

tio
n 

va
lu

e

Iteration number
0 20 40 60 80 100

0

1

2

3

4

P
en

al
ty

 p
ar

am
et

er

(f) SRI.

Figure B.2: Optimal topologies of a simply supported square plate subjected to center point
load, single layer model, t = 0.01: (a)-(c) optimal topologies, (d)-(f) convergence histories.

to different designs, the discrepency is significant. This difference is likely as a result of the
SRI element being softer than the ANS elements in transverse shear.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 1.3109 3.1641
Analysed with ANS 17.5832 0.0000 1.1297
Analysed with SRI 24.3415 -0.4341 0.0000

Constraint value 5.5924e-05 1.1389e-05 -7.5900e-06

Table B.2: Percentage difference: Simply supported square plate subjected to center point
load, single layer model, t = 0.1.
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(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.3: Optimal topologies of a simply supported square plate subjected to center point
load, single layer model, t = 0.1: (a)-(c) optimal topologies, (d)-(f) convergence histories.
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Ribbed material model

Figures B.4 and B.5, together with Tables B.3 and B.4 indicate that the ribbed design
solutions are similar for the thin and thick structures. The shape of the thick Mindlin-
Reissner solutions differ slightly from the thin results, but the difference in compliance,
presented in Table B.4, is insignificant.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 -0.1651 -0.2534
Analysed with ANS 0.1721 0.0000 -0.0868
Analysed with SRI 0.2514 0.0823 0.0000

Constraint value 7.0194e-05 2.4505e-05 -2.5642e-06

Table B.3: Percentage difference: Simply supported square plate subjected to center point
load, ribbed model, t = 0.01.

(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.4: Optimal topologies of a simply supported square plate subjected to center point
load, ribbed model, t = 0.01: (a)-(c) optimal topologies, (d)-(f) convergence histories.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 1.4849 1.5135
Analysed with ANS 0.4956 0.0000 0.0404
Analysed with SRI 0.5351 -0.0030 0.0000

Constraint value 7.0194e-05 -1.1443e-04 4.4419e-05

Table B.4: Percentage difference: Simply supported square plate subjected to center point
load, ribbed model, t = 0.1.
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(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.5: Optimal topologies of a simply supported square plate subjected to center point
load, ribbed model, t = 0.1: (a)-(c) optimal topologies, (d)-(f) convergence histories.
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Honeycomb material model

Considering the honeycomb layered model, the Mindlin-Reissner elements recover the same
topology as the Kirchhoff element for the thin structure. For the thick plate however,
although the percentage difference in function values presented in Table B.6 are very small,
the optimal topologies calculated using using each element differ. What is more, Table B.6
confirms that the optimal topology generated with each element, is superior to the topologies
calculated using the remaining two elements. This illustrates that the ‘optimal’ (shape or)
topology is dependent on which element is employed in the finite element analysis. Again,
the assumption is that the difference, especially between the two Mindlin-Reissner elements
is due to the ANS element being slightly stiffer than the SRI element in transverse shear.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 0.0006 0.0004
Analysed with ANS -0.0005 0.0000 -0.0002
Analysed with SRI -0.0003 0.0002 0.0000

Constraint value 1.3423e-04 -1.7928e-04 -1.8889e-04

Table B.5: Percentage difference: Simply supported square plate subjected to center point
load, honeycomb model, t = 0.01.

(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.

0 20 40 60 80 100
0.96

0.97

0.98

0.99

1

1.01

N
or

m
al

iz
ed

 fu
nc

tio
n 

va
lu

e

Iteration number
0 20 40 60 80 100

0

1

2

3

4

P
en

al
ty

 p
ar

am
et

er

(f) SRI.

Figure B.6: Optimal topologies of a simply supported square plate subjected to center point
load, honeycomb model, t = 0.01: (a)-(c) optimal topologies, (d)-(f) convergence histories.

 
 
 



www.manaraa.com

B.2. ADDITIONAL PLATE RESULTS 241

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 0.1873 0.5094
Analysed with ANS 0.1218 0.0000 0.0522
Analysed with SRI 0.4893 0.1351 0.0000

Constraint value 1.3423e-04 1.6512e-04 -9.2279e-05

Table B.6: Percentage difference: Simply supported square plate subjected to center point
load, honeycomb model, t = 0.1.

(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.

0 20 40 60 80 100
0.9

0.92

0.94

0.96

0.98

1

N
or

m
al

iz
ed

 fu
nc

tio
n 

va
lu

e

Iteration number
0 20 40 60 80 100

0

1

2

3

4

P
en

al
ty

 p
ar

am
et

er

(f) SRI.

Figure B.7: Optimal topologies of a simply supported square plate subjected to center point
load, honeycomb model, t = 0.1: (a)-(c) optimal topologies, (d)-(f) convergence histories.
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B.2.2 Clamped square plate with centre point load

The geometry for this problem is depicted in Figure 6.9(b). The load considered is again a
unit point load applied to the center of the plate. This problem has been considered by a
number of authors [4, 115], and our thin plate results compare favorably with theirs.

Single layer material model

The results for this problem are contained in Figures B.8 to B.13, and Tables B.7 to B.12.
Figures B.8 and B.9, together with Tables B.7 and B.8 present the results for the thin and
thick single layer models, respectively. Figures B.10 and B.11 and Tables B.9 and B.10
present the analysis thin and thick ribbed material models. The results for the thin and
thick honeycomb material models are presented in Figures B.12 and B.13 with corresponding
analysis in Tables B.11 and B.12, respectively.

From Figure B.8 and Table B.7 it is evident that, for the thin single layer material model,
almost identical topologies are achieved for all elements. Although there is no visible dif-
ference between the three topologies, the negative values in the third column of Table B.7
indicate that the SRI result is marginally superior. The thick plate model on the other hand,
results in slightly different topologies when Mindlin-Reissner elements are used compared to
the result with the DKQ element. The finite element model is highly constrained, which
could explain the slightness in difference between the thin and thick results. Nevertheless,
the effect on the compliance is significant, with a 14% improvement on the thin topology’s
compliance compared to the result using ANS elements, when analysed with ANS elements
and a 37% improvement when compared to the SRI results, analysed with SRI elements.
Again, although the 14% and 37% difference cannot be directly compared (because the dif-
ferences are computed with respect to different optimal topologies) the indication is that the
ANS elements are slightly more stiff in transverse shear than the SRI elements.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 -0.1317 -0.3028
Analysed with ANS 0.1733 0.0000 -0.1513
Analysed with SRI 0.6954 0.7259 0.0000

Constraint value -5.5042e-05 3.1765e-05 -7.8998e-05

Table B.7: Percentage difference: Clamped square plate subjected to center point load,
single layer model, t = 0.01.
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(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.8: Optimal topologies of a clamped square plate subjected to center point load,
single layer model, t = 0.01: (a)-(c) optimal topologies, (d)-(f) convergence histories.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 1.3371 2.4424
Analysed with ANS 13.9028 0.0000 -0.0229
Analysed with SRI 37.0471 0.8543 0.0000

Constraint value -5.5042e-05 -7.2254e-05 8.2104e-06

Table B.8: Percentage difference: Clamped square plate subjected to center point load,
single layer model, t = 0.1.

(a) DKQ. (b) ANS. (c) SRI.

0 20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
or

m
al

iz
ed

 fu
nc

tio
n 

va
lu

e

Iteration number
0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

3.5

4

P
en

al
ty

 p
ar

am
et

er

(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.9: Optimal topologies of a clamped square plate subjected to center point load,
single layer model, t = 0.1: (a)-(c) optimal topologies, (d)-(f) convergence histories.
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Ribbed material model

For the ribbed material model, the thin and thick structures result in the same topologies
for all elements as depicted in Figures B.10 and B.11. However, again the shape of the
Mindlin-Reissner results differs slightly from the DKQ results for the thick plate. The values
of compliance for the thin and thick plates are again similar for all elements, as shown in
Tables B.9 and B.10.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 0.0028 0.0115
Analysed with ANS -0.0026 0.0000 0.0099
Analysed with SRI -0.0098 -0.0069 0.0000

Constraint value 7.4645e-05 -2.9307e-05 -4.0355e-05

Table B.9: Percentage difference: Clamped square plate subjected to center point load,
ribbed model, t = 0.01.

(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.10: Optimal topologies of a clamped square plate subjected to center point load,
ribbed model, t = 0.01: (a)-(c) optimal topologies, (d)-(f) convergence histories.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 0.5273 0.5113
Analysed with ANS 0.1536 0.0000 0.0024
Analysed with SRI 0.2054 0.0593 0.0000

Constraint value 7.4645e-05 -9.2086e-05 7.4218e-05

Table B.10: Percentage difference: Clamped square plate subjected to center point load,
ribbed model, t = 0.1.
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(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.11: Optimal topologies of a clamped square plate subjected to center point load,
ribbed model, t = 0.1: (a)-(c) optimal topologies, (d)-(f) convergence histories.
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Honeycomb material model

Although in the case of the honeycomb material model, the optimal topologies for the thick
plate generated using Mindlin-Reissner elements (see Figure B.13) are different to the results
for the thin plate (depicted in Figure B.12), the result on the compliance is modest. How-
ever, the compliance results presented in Table B.12 do confirm that the optimal topology
calculated using Mindlin-Reissner elements is lower than the DKQ topology for thick plates,
whereas the DKQ result is indeed superior for thin plate problems.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 -0.0060 0.0057
Analysed with ANS 0.0063 0.0000 0.0119
Analysed with SRI -0.0058 -0.0120 0.0000

Constraint value -5.9377e-05 -1.8208e-04 -1.3014e-04

Table B.11: Percentage difference: Clamped square plate subjected to center point load,
honeycomb model, t = 0.01.

(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.12: Optimal topologies of a clamped square plate subjected to center point load,
honeycomb model, t = 0.01: (a)-(c) optimal topologies, (d)-(f) convergence histories.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 0.2895 0.3975
Analysed with ANS 0.6686 0.0000 0.0097
Analysed with SRI 1.2910 0.0929 0.0000

Constraint value -5.9377e-05 7.6439e-06 -1.0764e-04

Table B.12: Percentage difference: Clamped square plate subjected to center point load,
honeycomb model, t = 0.1.
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(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.

0 20 40 60 80 100
0.88

0.9

0.92

0.94

0.96

0.98

1

N
or

m
al

iz
ed

 fu
nc

tio
n 

va
lu

e

Iteration number
0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

3.5

4

P
en

al
ty

 p
ar

am
et

er

(e) ANS.
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(f) SRI.

Figure B.13: Optimal topologies of a clamped square plate subjected to center point load,
honeycomb model, t = 0.1: (a)-(c) optimal topologies, (d)-(f) convergence histories.
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B.2.3 Corner supported square plate with centre point load

The final plate geometry with restraints is depicted in Figure 6.9(c). It represents a corner
supported plate (i.e. transverse displacement is constrained at the four corner nodes only).
For this problem, the first load case considered, is again a center point load as before. Again
the single layer, ribbed and honeycomb material models are analyzed.

Figures B.14 to B.19 with corresponding Tables B.13 to B.18 present the results for the
corner supported square plate subjected to a center point load, for the single layer, ribbed
and honeycomb material models.

Single layer material model

In Figure B.14 the optimal topologies for the thin, single layer material model are depicted.
Once again, the topologies of all three elements are very similar. Although the SRI elements
convergence history shows that some numerical problems were encountered during the op-
timization process, the final topology is not significantly affected. Albeit similar topologies
are computed for the DKQ and ANS elements, Table B.13 indicates that the DKQ topology
shows a 1% improvement over the optimal ANS results, when analysed using ANS elements.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 1.2686 1.8995
Analysed with ANS -1.0090 0.0000 0.5854
Analysed with SRI 2.1438 2.5740 0.0000

Constraint value -5.2618e-05 -5.2688e-05 -3.4714e-05

Table B.13: Percentage difference: Corner supported square plate subjected to center point
load, single layer model, t = 0.01.

(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.14: Optimal topologies of a corner supported square plate subjected to center point
load, single layer model, t = 0.01: (a)-(c) optimal topologies, (d)-(f) convergence histories.

The results for the thick single layer material model are depicted in Figure B.15. In this
case, the SRI result is distinctly different from the results using the other two elements.
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Table B.14 shows that the compliance of the SRI result is approximately 4.5% lower than
the DKQ result when both designs are analysed with DKQ elements and approximately 8.5%
better than the ANS result when analysed using ANS elements. In this specific case the SRI
element clearly realised the best design. This is again, probably due to the SRI element
being ‘softer’ in transverse shear than the other two elements, which results in the optimizer
searching different parts of the design domain. For this specific problem, the optimalilty
criteria based algorithm appears to have terminated in local optima for the DKQ and ANS
elements.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 2.6995 -4.6636
Analysed with ANS 3.4167 0.0000 -8.5961
Analysed with SRI 16.4448 10.6660 0.0000

Constraint value -5.2541e-05 2.3863e-05 2.5479e-05

Table B.14: Percentage difference: Corner supported square plate subjected to center point
load, single layer model, t = 0.1.

(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.15: Optimal topologies of a corner supported square plate subjected to center point
load, single layer model, t = 0.1: (a)-(c) optimal topologies, (d)-(f) convergence histories.
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To confirm this, the same problem was run with identical finite element settings using the
well-known MMA algorithm of Svanberg [10]. The optimal topologies for the MMA run are
depicted in Figure B.16 with analysis of results in Table B.15. Ironically upon employing
MMA as optimizer the results are reversed and the ANS element finds a superior design!
Although for this specific problem the optimality criteria based updating scheme is unable
to find the globally optimal solution for the ANS or DKQ elements, the effect of the finite
element employed on ‘optimal topology’ is clearly demonstrated. This problem in particu-
lar serves also as a demonstration of the complexity (in global optimization terms) of the
topology optimization problem.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 -4.9705 3.4879
Analysed with ANS 15.2086 0.0000 10.0908
Analysed with SRI 6.5512 -9.4479 0.0000

Constraint value -2.8216e-03 -9.8052e-04 -1.5108e-03

Table B.15: Percentage difference

(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.16: Optimal topologies of a corner supported square plate subjected to center point
load, single layer model, t = 0.1: (a)-(c) optimal topologies, (d)-(f) convergence histories.
Solved using MMA not OC.
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Ribbed material model

Note that the results for the thin ribbed material model are presented and discussed in
Section 6.5.3 on page 168. Considering the thick plate results for the ribbed material model,
depicted in Figure B.17, again a distinctly different topology results from the use of Mindlin-
Reissner elements. The numerical problems encountered with the SRI elements in the thin
plate analysis are not experienced in this case. The negative values in the first row of Table
B.16 indicate that the thick plate results is marginally superior, even for thin plates.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 -0.2379 -0.1029
Analysed with ANS 4.2660 0.0000 0.0515
Analysed with SRI 4.4234 -0.0099 0.0000

Constraint value -3.3457e-05 -2.8658e-05 -2.1399e-06

Table B.16: Percentage difference: Corner supported square plate subjected to center point
load, ribbed model, t = 0.1.

(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.

0 20 40 60 80 100
0.9

1

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 fu
nc

tio
n 

va
lu

e

Iteration number
0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

3.5

4

P
en

al
ty

 p
ar

am
et

er

(f) SRI.

Figure B.17: Optimal topologies of a corner supported square plate subjected to center point
load, ribbed model, t = 0.1: (a)-(c) optimal topologies, (d)-(f) convergence histories.
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Honeycomb material model

The results for the corner supported plate subjected to center point load with the thin
honeycomb material model are depicted in Figure B.18. Again, although all converged
topologies are similar, the iteration history of the SRI element suggests that some numerical
instabilities occurred. In this case, many elements with negative compliance (or positive
compliance gradient) were encountered at iteration 90. Figure B.19 illustrates how each
of the element used to analyze the thick honeycomb material model, result in different
topologies. In this case, the SRI element did not encounter any numerical problems in
the iteration history. Although the SRI and ANS topologies (and shapes) are different,
the compliance of the two structures is very similar. However, this problem demonstrates
that even the two Mindlin-Reissner based elements result in different optimal shapes and
topologies even though no numerical problems were encountered during the optimization
history.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 0.0331 0.0469
Analysed with ANS 0.0046 0.0000 0.0103
Analysed with SRI 0.0184 0.0065 0.0000

Constraint value -1.5311e-04 3.8396e-05 -2.0403e-04

Table B.17: Percentage difference: Corner supported square plate subjected to center point
load, honeycomb model, t = 0.01.

(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.18: Optimal topologies of a corner supported square plate subjected to center point
load, honeycomb model, t = 0.01: (a)-(c) optimal topologies, (d)-(f) convergence histories.
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Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 0.3268 0.6250
Analysed with ANS 1.8237 0.0000 0.1043
Analysed with SRI 3.3749 0.0978 0.0000

Constraint value -1.5311e-04 2.7573e-04 6.2309e-05

Table B.18: Percentage difference: Corner supported square plate subjected to center point
load, honeycomb model, t = 0.1.

(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.

0 20 40 60 80 100
0.94

0.95

0.96

0.97

0.98

0.99

1

N
or

m
al

iz
ed

 fu
nc

tio
n 

va
lu

e

Iteration number
0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

3.5

4

P
en

al
ty

 p
ar

am
et

er

(f) SRI.

Figure B.19: Optimal topologies of a corner supported square plate subjected to center point
load, honeycomb model, t = 0.1: (a)-(c) optimal topologies, (d)-(f) convergence histories.
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B.2.4 Corner supported square plate with distributed load

In this problem the same corner supported geometry and restraints, depicted in Figure 6.9(c),
are used but the applied load in this case is uniformly distributed over the plate surface.
In order to ensure that the load is not design dependent, only the ribbed and honeycomb
material models are considered. The results for the thin ribbed material model are not
repeated here since they are presented in Section 6.5.3, on page 168.

Figure B.20 depicts the optimal topologies for the thick ribbed models, with analysis in
Table B.19. The results for the honeycomb material model are shown in Figures B.21 and
B.22 with compliance results presented in Tables B.20 and B.21.

Ribbed material model

For the thick plate, again DKQ results in the same topology as the thin plate analysis, while
the result of the ANS element is distinctly different. The compliance of the DKQ result
is almost 3% higher than that of the ANS result when analysed with ANS plate elements.
Again, the SRI element has an extremely irratic convergence history and a completely spu-
rious, unsymmetric optimal topology results.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 0.6072 34.2893
Analysed with ANS 2.7370 0.0000 34.5983
Analysed with SRI 121.3774 713.3591 0.0000

Constraint value 3.0994e-05 -3.2532e-05 -3.4844e-05

Table B.19: Percentage difference: Corner supported square plate subjected to uniform
distributed load, ribbed model, t = 0.1.

(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.20: Optimal topologies of a corner supported square plate subjected to uniform
distributed load, ribbed model, t = 0.1: (a)-(c) optimal topologies, (d)-(f) convergence
histories.
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Honeycomb material model

Similar observations can be made for the honeycomb layered models, depicted in Figures
B.21 and B.22, with compliance analysis in Tables B.20 and B.21. The displaced shape of
the thick honeycomb topologies computed with DKQ and ANS elements respectively, and
analyzed using SRI elements, are plotted in Figures B.23 and B.24. In both the thin and
thick honeycomb material models (especially the thin model), the compliance of the final
topology computed with SRI elements is extremely large, due to the propagating mode.
Therefore, the DKQ and ANS optimal topologies appear to be much better in Table B.20
since they are compared to a structure with almost zero stiffness.

Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 0.0031 1.5821
Analysed with ANS -0.0017 0.0000 1.9462
Analysed with SRI -99.6858 -99.6666 0.0000

Constraint value 1.9059e-04 1.7756e-04 -8.6728e-03

Table B.20: Percentage difference: Corner supported square plate subjected to uniform
distributed load, honeycomb model, t = 0.01.

(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.21: Optimal topologies of a corner supported square plate subjected to uniform
distributed load, honeycomb model, t = 0.01: (a)-(c) optimal topologies, (d)-(f) convergence
histories.
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Optimal topology generated using:
DKQ ANS SRI

Analysed with DKQ 0.0000 0.1147 1.5020
Analysed with ANS 0.2618 0.0000 2.1867
Analysed with SRI 2344.5765 -22.7655 0.0000

Constraint value 1.9057e-04 4.6099e-05 7.0618e-04

Table B.21: Percentage difference: Corner supported square plate subjected to uniform
distributed load, honeycomb model, t = 0.1.

(a) DKQ. (b) ANS. (c) SRI.
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(d) DKQ.
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(e) ANS.
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(f) SRI.

Figure B.22: Optimal topologies of a corner supported square plate subjected to uniform
distributed load, honeycomb model, t = 0.1: (a)-(c) optimal topologies, (d)-(f) convergence
histories.
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Figure B.23: Optimal topology, computed using DKQ, of the corner supported plate sub-
jected to distributed load with thick honeycomb material model: Displaced shape analyzed
using SRI elements, amplification factor 1 × 10−4.

Figure B.24: Optimal topology, computed using ANS, of the corner supported plate sub-
jected to distributed load with thick honeycomb material model: Displaced shape analyzed
using SRI elements, amplification factor 1 × 10−4.
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B.3 Additional shell results

In the final section of this appendix, results not included in Section 6.5.5 are offered.

B.3.1 Cylindrical shell

The first shell problem is depicted in Figure 6.15. The geometry, restraints, applied loads
and material properties are all depicted in the figure. The symmetry of the problem is
exploited by only modeling one quarter of the structure with a 30× 30 discretization. Once
again, results are reported for the single layer, ribbed and honeycomb material models. A
volume constraint of half of the design volume is again imposed.

Single layer material model

Figures B.25 and B.26 present details of the optimal topologies depicted in Figure 6.16, and
their corresponding convergence histories. Since the x-axis of Figure 6.16 is plotted on a
logarithmic scale, the topology at α = 0 could not be included.

Figures B.25(a) and B.25(g) depict the optimal topologies for α = 0 using the Q4αDKQ and
Q4γDKQ elements respectively, with convergence histories in Figures B.26(a) and B.26(g),
respectively. Notably, the Q4αDKQ has numerical instabilities if no stiffness is allotted
to the rotational DOFs. No such problem is encountered when employing the Q4γDKQ
element. The stability of the Q4γDKQ element at α = 0 is due to the fact that α (which
only scales γ) eliminates the penalty matrix pγ

m = 0 in (6.29). However, enough stiffness is
present to prevent numerical problems in the topology optimization environment. Of course
this does not mean that the value of compliance will be very accurately calculated, and since
this element is rank deficient its use in general should be avoided.
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(a)
Q4αDKQ
element,
α = 0.

(b)
Q4αDKQ
element,
α = 10−6.

(c)
Q4αDKQ
element,
α = 10−4.

(d)
Q4αDKQ
element,
α = 10−2.

(e)
Q4αDKQ
element,
α = 100.

(f)
Q4αDKQ
element,
α = 102.

(g)
Q4γDKQ
element,
α = 0.

(h)
Q4γDKQ
element,
α = 10−6.

(i) Q4γDKQ
element,
α = 10−4.

(j)
Q4γDKQ
element,
α = 10−2.

(k)
Q4γDKQ
element,
α = 100.

(l) Q4γDKQ
element,
α = 102.

Figure B.25: Optimal topologies of corner supported cylinder with single layer material
model for various values of α.
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(a)
Q4αDKQ
element,
α = 0.
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(b)
Q4αDKQ
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α = 10−6.
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(c)
Q4αDKQ
element,
α = 10−4.
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(d)
Q4αDKQ
element,
α = 10−2.

0 20 40 60 80 100
2.6

2.8

3

3.2

3.4

3.6

3.8

4x 10
−5

N
or

m
al

iz
ed

 fu
nc

tio
n 

va
lu

e

Iteration number
0 20 40 60 80 100

0

1

2

3

4

P
en

al
ty

 p
ar

am
et

er

(e)
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α = 100.
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(f)
Q4αDKQ
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α = 102.
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(g)
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α = 0.
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(h)
Q4γDKQ
element,
α = 10−6.
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(i) Q4γDKQ
element,
α = 10−4.
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(j)
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α = 10−2.

0 20 40 60 80 100
2.6

2.8

3

3.2

3.4

3.6

3.8

4x 10
−5

N
or

m
al

iz
ed

 fu
nc

tio
n 

va
lu

e

Iteration number
0 20 40 60 80 100

0

1

2

3

4

P
en

al
ty

 p
ar

am
et

er

(k)
Q4γDKQ
element,
α = 100.
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(l) Q4γDKQ
element,
α = 102.

Figure B.26: Convergence histories for corner supported cylinder with single layer material
model for various values of α.
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Ribbed material model

Figure B.27 depicts the optimal topologies, as well as the function and constraint values,
for the ribbed material model as a function of scaling parameter α. Again, the results for
the Q4αDKQ element differ from the Q4γDKQ results at high values of α. Conversely, the
optimal topologies calculated using the Q4γDKQ element are relatively insensitive to α.

Figures B.29(a) once again indicate that, with α is set to zero, an unstable convergence his-
tory results for the Q4αDKQ element is recorded, although the a ‘correct’ optimal topology
results. Figure B.29(g) confirms that no such problems are encountered when employing the
Q4γDKQ element.
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Figure B.27: Optimal topologies of a corner supported cylinder with ribbed material model.
Above are the optimal topologies solved employing the standard Q4γDKQ element. On
the second row are the optimal topologies employing Q4αDKQ for various values of scaling
factor α. Also shown are the optimal function and constraint values for various values of
scaling factor α.
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Figure B.28: Optimal topologies of corner supported cylinder with ribbed material model
for various values of α.
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α = 10−6.
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(l) Q4γDKQ
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Figure B.29: Convergence histories for corner supported cylinder with ribbed material model
for various values of α.
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Honeycomb material model

Finally, the optimal topologies for the honeycomb material model, are presented in Figure
B.30. Again, the sensitivity of optimal topologies using Q4αDKQ elements is highlighted, in
contrast to the Q4γDKQ element. Figure B.32(a) shows that although the optimal topology
of the Q4αDKQ element corresponds to that using Q4γDKQ elements, some numerical
instabilities are once again encountered when α = 0 in the Q4αDKQ element.
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Figure B.30: Optimal topologies of a corner supported cylinder with honeycomb material
model. Above are the optimal topologies solved employing the standard Q4γDKQ element.
On the second row are the optimal topologies employing Q4αDKQ for various values of
scaling factor α. Also shown are the optimal function and constraint values for various
values of scaling factor α.

B.3.2 Pretwisted beam

The final shell example is depicted in Figure 6.17. The problem is that of a pretwisted beam,
which is clamped at the root, with two point loads applied at the vertices opposite the fixed
end. The full geometry is modeled with a 40×40 discretization. A volume constraint of half
of the design volume is imposed. For brevity, only the single layer results will be presented.
This problem has previously been shown to be sensitive to the value of α [135].

For this problem, the range of values of α for which the Q4αDKQ and Q4γDKQ elements
result in similar topologies is much smaller than the cylindrical shell problem. In fact, Figure
B.33 shows that values of α = 0, 10−6, 10−4 and 10−2, each result in different topologies when
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the finite element model employs Q4αDKQ elements! In contrast, the Q4γDKQ element is
once again shown to be stable for all tested values of α.

Single layer material model
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Figure B.31: Optimal topologies of corner supported cylinder with honeycomb material
model for various values of α.
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Figure B.32: Convergence histories for corner supported cylinder with honeycomb material
model for various values of α.

 
 
 



www.manaraa.com

B.3. ADDITIONAL SHELL RESULTS 265

(a)
Q4αDKQ
element,
α = 0.

(b)
Q4αDKQ
element,
α = 10−6.

(c)
Q4αDKQ
element,
α = 10−4.

(d)
Q4αDKQ
element,
α = 10−2.

(e)
Q4αDKQ
element,
α = 100.

(f)
Q4αDKQ
element,
α = 102.

(g)
Q4γDKQ
element,
α = 0.

(h)
Q4γDKQ
element,
α = 10−6.

(i) Q4γDKQ
element,
α = 10−4.

(j)
Q4γDKQ
element,
α = 10−2.

(k)
Q4γDKQ
element,
α = 100.

(l) Q4γDKQ
element,
α = 102.

Figure B.33: Optimal topologies of pretwisted beam with single layer material model for
various values of α.
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Figure B.34: Convergence histories for pretwisted beam with single layer material model for
various values of α.

 
 
 


